Home
Class 12
MATHS
The value of int(1-x^7)/(x(1+x^7))dx is ...

The value of `int(1-x^7)/(x(1+x^7))dx` is equal to

A

`a=1,b=(2)/(7)`

B

`a=-1,b=(2)/(7)`

C

`a=1,b=-(2)/(7)`

D

`a=-1,b=-(2)/(7)`

Text Solution

Verified by Experts

The correct Answer is:
c

We have , `int(1-x^(7))/(x(1+x^(7)))dx=aIn |x| +bIn|x^(7)+1|+C`
Differentiating both sides W.r.t to , x, to x, we get
`(1-x^(7))/(x(1+x^(7)))=(a)/(x)+7b(x^(6))/(x^(7)+1)`
`rArr1-x^(7)=a(1+x^(7))+7bx^(7)rArra=1,b=-(2)/(7)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

The value of int(x^(7))/((1-x^(2))^(5))dx is

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

int(x+1)(x+2)^(7)(x+3)dx is equal to

int_(0)^(1)(1-x^(7))^(2)dx is equal to

Evaluate : int(dx)/(x(x^(7)+1))

The value of int x log x (log x - 1) dx is equal to