Home
Class 12
MATHS
Let g (x) be a differentiable function ...

Let g (x) be a differentiable function satisfying `(d)/(dx){g(x)}=g(x) and g (0)=1` , then `g(x)((2-sin2x)/(1-cos2x))dx` is equal to

A

`g(x)cotx+C`

B

`-g(x)cotx+C`

C

`(g(x))/(1-cos2x)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b

We have , `(d)/(dx){g(x)}=g(x)`
`rArrg'(x)=g(x)`
`rArrint(g(x))/(g(x))dx=int1 . dx`
`rArr log_(e){g(x)}=x+logCrArrg(x)=Ce^(x)`
Now , g`(0)=1rArrc=1`
`rArr g (x)=e^(x)`
`rArrintg(x)(2-sinx)/(1-cosx)dx`
`=inte^(x)("cosec"^(2)x-cotx)dx=-e^(x)cot+C=-g(x)cotx+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be a function satisfying g(0)=2,g(1)=3,g(x+2)=2g(x)-g(x+1), then find g(5)

If f(x),g(x) be twice differentiable functions on [0,2] satisfying f''(x)=g''(x)f'(1)=2g'(1)=4 and f(2)=3g(2)=9 then f(x)-g(x) at x=4 equals (A) 0 (B) 10 (C) 8 (D) 2

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

Suppose g(x) is a real valued differentiable function satisfying g'(x)+2g(x)>1. Then show that e^(2x)(g(x)-(1)/(2)) is an increasing function.

Let g:R rarr R be a differentiable function such that g(2)=-40 and g'(2)=-5 then lim_(x rarr0)(((g(2-x^(2)))/((g(2))^(4))/x^(2) is equal to

If f(x),g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6,f(2)=3,g(2)=9,then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

Let g:[1,6]rarr[0,) be a real valued differentiable function satisfying g'(x)=(2)/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed ln2(b)ln6 6ln2(d)2ln6