Home
Class 12
MATHS
If int(1)/((x+1)(x-2))dx=Alog(e)(x+1)+Bl...

If `int(1)/((x+1)(x-2))dx=Alog_(e)(x+1)+Blog_(e)(x-2)+C` , then A + B = ?

A

A+B=0

B

A - B = 0

C

AB =1

D

AB =-1

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int(1)/((x+1)(x-2))dx=int(1)/(3)((1)/(x-2)-(1)/(x+1))`dx
`rArrI=(1)/(3)log_(e)(x-2)-(1)/(3)log_(e)(x+1)+C`
`thereforeA=-(1)/(3)andB=(1)/(3)rArrA+B=0`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)e^(a//x))dx=

If int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c, then

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

int(e^(2x))/(1+e^(2x))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=

If int(4x+1)/(x^(2)+3x+2)dx =a log |x+1|+blog |x+2| +C , then

int((e^(2x))/(e^(2x)-1))dx=

I=int(e^(2x)-1)/(e^(2x))dx

int(x+1)^(2)e^(x)dx

int1/((e^(2x)+e^(-2x))^(2))dx=