Home
Class 12
MATHS
int(x^(4)+1)/(x^(6)+1)dx is equal to...

`int(x^(4)+1)/(x^(6)+1)dx` is equal to

A

`tan^(-1)x+(1)/(3)tan^(-1)x^(3)+C`

B

`tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`

C

`-tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a

`I=int(x^(4)+1)/(x^(6)+1)dx=int((x^(4)-x^(2)+1)+x^(2))/(x^(6)+1)dx`
`rArr I=int(x^(4)-x^(2)+1)/((x^(2))+1)dx+int(x^(2))/(x^(6)+1)dx`
`rArr I= int(1)/(x^(2)+1)dx+(1)/(3)int(1)/((x^(3))^(2)+1)d(x^(3))`
`rArr I=tan^(-1)x+(1)/(3)tan^(-1)(x^(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

The value of int(x^(2))/(1+x^(6))dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to

int(x^(2))/(x^(6)+1)dx is equal to : "

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(x^(3)-x)/(1+x^(6))dx is equal to

What is int(x^(4)+1)/(x^(2)+1)dx equal to ?

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

int((x4-x)^(1//4))/(x^(5))dx is equal to

int(1)/(x(x^(4)-1))dx is equal to