Home
Class 12
MATHS
The integral int(1)/((1+sqrt(x))sqrt(x-x...

The integral `int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx` is equal to (where C is the constant of integration)

A

`-2sqrt((1+sqrt(x))/(1-sqrt(x)))+C`

B

`-2sqrt((1-sqrt(x))/(1+sqrt(x)))+C`

C

`-sqrt((1+sqrt(x))/(1+sqrt(x)))+C`

D

`2sqrt((1+sqrt(x))/(1-sqrt(x)))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1}{(1 + \sqrt{x}) \sqrt{x - x^2}} \, dx, \] we can start by simplifying the expression under the integral. ### Step 1: Rewrite the integral Notice that \( \sqrt{x - x^2} = \sqrt{x(1 - x)} \). Thus, we can rewrite the integral as: \[ I = \int \frac{1}{(1 + \sqrt{x}) \sqrt{x(1 - x)}} \, dx. \] ### Step 2: Use a substitution Let's use the substitution \( x = \sin^2(\theta) \). Then, we have: \[ dx = 2 \sin(\theta) \cos(\theta) \, d\theta = \sin(2\theta) \, d\theta. \] Now, substituting \( x = \sin^2(\theta) \) gives: \[ \sqrt{x} = \sin(\theta) \quad \text{and} \quad 1 - x = \cos^2(\theta). \] Thus, \[ \sqrt{x(1 - x)} = \sqrt{\sin^2(\theta) \cos^2(\theta)} = \sin(\theta) \cos(\theta). \] ### Step 3: Substitute into the integral Now substituting everything into the integral: \[ I = \int \frac{\sin(2\theta)}{(1 + \sin(\theta)) \sin(\theta) \cos(\theta)} \, d\theta. \] ### Step 4: Simplify the integral We can simplify the integral further: \[ I = \int \frac{2 \sin(\theta) \cos(\theta)}{(1 + \sin(\theta)) \sin(\theta) \cos(\theta)} \, d\theta = \int \frac{2}{1 + \sin(\theta)} \, d\theta. \] ### Step 5: Use another substitution To solve this integral, we can use the substitution \( u = 1 + \sin(\theta) \), then \( du = \cos(\theta) d\theta \). The integral becomes: \[ I = 2 \int \frac{1}{u} \, du = 2 \ln |u| + C = 2 \ln |1 + \sin(\theta)| + C. \] ### Step 6: Back substitute Now we need to convert back to \( x \). Recall that \( \sin(\theta) = \sqrt{x} \): \[ I = 2 \ln |1 + \sqrt{x}| + C. \] ### Final Answer Thus, the integral \[ \int \frac{1}{(1 + \sqrt{x}) \sqrt{x - x^2}} \, dx = 2 \ln |1 + \sqrt{x}| + C. \]

To solve the integral \[ I = \int \frac{1}{(1 + \sqrt{x}) \sqrt{x - x^2}} \, dx, \] we can start by simplifying the expression under the integral. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

The integral int((x)/(x sin x+cos x))^(2)" dx is equal to (where C is a constant of integration )

The integral int((x)/(x sin x+cos x))^(2)dx is equal to (where "C" is a constant of integration

The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C is constant of integration)

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Solved Example
  1. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  2. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  3. int[sin(101 x)*sin^(99)x]dx

    Text Solution

    |

  4. Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is a...

    Text Solution

    |

  5. int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

    Text Solution

    |

  6. If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + ...

    Text Solution

    |

  7. Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x...

    Text Solution

    |

  8. int(x)/(sqrt(1+x^(2)+sqrt(1+x^(2))^(3)))dx is equal to

    Text Solution

    |

  9. inte^(x)((x-1)(x-logx))/(x^(2))dx is equal to

    Text Solution

    |

  10. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  11. Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, if...

    Text Solution

    |

  12. Evaluate: int(e^tan^((-1)x))/((1+x^2))[(sec^(-1)sqrt(1+x^2)+cos^(-1)((...

    Text Solution

    |

  13. intx^(2)((xsec^(2)x+tanx))/((xtanx+1)^(2))dx=

    Text Solution

    |

  14. int (mx^(m+2n-1)-nx^(n-1))/(x^(2m+2n)+2x^(m+n)+1)dx is equal to

    Text Solution

    |

  15. int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

    Text Solution

    |

  16. int(x^(2)(1-"In "x))/(("In "x)^(4)-x^(4))dx is equal to

    Text Solution

    |

  17. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  18. If int(1)/(cos^(3)xsqrt(2 sin2x))dx=(tanx)^(A)+C(tanx)^(B)+k, where k...

    Text Solution

    |

  19. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=f(x)(1+x^(6))^(1/3)+C where, C is a...

    Text Solution

    |

  20. The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C ...

    Text Solution

    |