Home
Class 12
MATHS
If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(...

If `int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C` , then

A

`A=1//3,B=-2//3`

B

`A=-1//3,B=2//3`

C

`A=-1//3,B=1//3`

D

`A=1//3,B=-1//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1}{(x^2 + 1)(x^2 + 4)} \, dx\), we will use the method of partial fractions. ### Step-by-Step Solution: 1. **Set up the Partial Fraction Decomposition**: We express \(\frac{1}{(x^2 + 1)(x^2 + 4)}\) as: \[ \frac{A}{x^2 + 1} + \frac{B}{x^2 + 4} \] where \(A\) and \(B\) are constants to be determined. 2. **Combine the Right-Hand Side**: To combine the fractions, we find a common denominator: \[ \frac{A(x^2 + 4) + B(x^2 + 1)}{(x^2 + 1)(x^2 + 4)} = \frac{1}{(x^2 + 1)(x^2 + 4)} \] This gives us the equation: \[ A(x^2 + 4) + B(x^2 + 1) = 1 \] 3. **Expand and Collect Like Terms**: Expanding the left side: \[ Ax^2 + 4A + Bx^2 + B = (A + B)x^2 + (4A + B) \] We set this equal to 1: \[ (A + B)x^2 + (4A + B) = 1 \] 4. **Set Up the System of Equations**: From the equation above, we can equate coefficients: - For \(x^2\): \(A + B = 0\) - For the constant term: \(4A + B = 1\) 5. **Solve the System of Equations**: From \(A + B = 0\), we can express \(B\) as: \[ B = -A \] Substituting \(B = -A\) into the second equation: \[ 4A - A = 1 \implies 3A = 1 \implies A = \frac{1}{3} \] Then substituting back to find \(B\): \[ B = -\frac{1}{3} \] 6. **Rewrite the Integral**: Now we can rewrite the integral: \[ \int \frac{1}{(x^2 + 1)(x^2 + 4)} \, dx = \int \left(\frac{1/3}{x^2 + 1} - \frac{1/3}{x^2 + 4}\right) \, dx \] 7. **Integrate Each Term**: The integrals can be computed as follows: \[ \int \frac{1/3}{x^2 + 1} \, dx = \frac{1}{3} \tan^{-1}(x) \] \[ \int \frac{1/3}{x^2 + 4} \, dx = \frac{1}{3} \cdot \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) = \frac{1}{6} \tan^{-1}\left(\frac{x}{2}\right) \] 8. **Combine the Results**: Therefore, the integral becomes: \[ \int \frac{1}{(x^2 + 1)(x^2 + 4)} \, dx = \frac{1}{3} \tan^{-1}(x) - \frac{1}{6} \tan^{-1}\left(\frac{x}{2}\right) + C \] ### Final Result: Comparing with the given form \(A \tan^{-1}(x) + B \tan^{-1}\left(\frac{x}{2}\right) + C\), we find: - \(A = \frac{1}{3}\) - \(B = -\frac{1}{6}\)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

" 1.If "int(1)/((x^(2)+1)(x^(2)+4))dx=G tan^(-1)x+H tan^(-1)((x)/(2))+C,C in A." Then "G=.......,H=...?

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

If int (dx)/((x^2+4)(x^2+9))=Atan^(-1)((x)/(2))+Btan^(-1)((x)/(3))+c , then A-B =

int(1)/((1+x^(2))tan^(-1)x)dx

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

int(1)/(x^(2))tan^(2)((1)/(x))dx

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

int tan^(-1)((2x)/(1-x^(2)))dx

int(x tan^(-1)x^(2))/(1+x^(4))dx

int(1)/(cos^(2)x(1-tan x)^(2))dx

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Chapter Test
  1. If int(xe^x)/sqrt(1+e^x)dx=f(x)sqrt(1+e^x)-2logg(x)+c, then

    Text Solution

    |

  2. The value of the integral int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx is...

    Text Solution

    |

  3. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  4. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  5. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  6. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  7. int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/...

    Text Solution

    |

  8. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  9. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  10. Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Text Solution

    |

  11. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  12. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  13. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out A & B

    Text Solution

    |

  14. What is int (x^(4) -1)/(x^(2) sqrt(x^(4) + x^(2) + 1)) dx equal to ?

    Text Solution

    |

  15. int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    Text Solution

    |

  16. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  17. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |

  18. If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C , then

    Text Solution

    |

  19. Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

    Text Solution

    |

  20. int (x)^(1/3) (7sqrt(1+3sqrt(x^(4))))dx is equal to

    Text Solution

    |