Home
Class 12
MATHS
int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alo...

`int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2)` , then (a,b) is

A

`(-1//2,1//2)`

B

`(1//2,1//2)`

C

`(-1,1)`

D

`(1,-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx, \] we will use the method of partial fractions. We can express the integrand as: \[ \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} = \frac{A}{x^2 - 1} + \frac{Bx + C}{x^2 + 4}. \] ### Step 1: Set up the equation We start by multiplying both sides by the denominator \((x^2 - 1)(x^2 + 4)\): \[ 2x^2 + 3 = A(x^2 + 4) + (Bx + C)(x^2 - 1). \] ### Step 2: Expand the right-hand side Expanding the right-hand side gives: \[ 2x^2 + 3 = A(x^2 + 4) + Bx(x^2 - 1) + C(x^2 - 1). \] This simplifies to: \[ 2x^2 + 3 = Ax^2 + 4A + Bx^3 - Bx + Cx^2 - C. \] Combining like terms, we have: \[ 2x^2 + 3 = (A + C + B)x^2 + Bx^3 + (4A - C). \] ### Step 3: Equate coefficients Now, we equate the coefficients from both sides: 1. Coefficient of \(x^3\): \(B = 0\) 2. Coefficient of \(x^2\): \(A + C = 2\) 3. Coefficient of \(x\): \(-B = 0\) (already satisfied) 4. Constant term: \(4A - C = 3\) ### Step 4: Solve the system of equations From \(B = 0\), we substitute into the other equations: 1. From \(A + C = 2\), we have \(C = 2 - A\). 2. Substitute \(C\) into \(4A - C = 3\): \[ 4A - (2 - A) = 3 \implies 4A - 2 + A = 3 \implies 5A = 5 \implies A = 1. \] Now substitute \(A = 1\) back to find \(C\): \[ C = 2 - A = 2 - 1 = 1. \] ### Step 5: Values of A and C Now we have \(A = 1\), \(B = 0\), and \(C = 1\). ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{1}{x^2 - 1} \, dx + \int \frac{1}{x^2 + 4} \, dx. \] ### Step 7: Integrate The first integral can be solved using the formula for the integral of a rational function: \[ \int \frac{1}{x^2 - 1} \, dx = \log \left| \frac{x + 1}{x - 1} \right| + C_1, \] and the second integral: \[ \int \frac{1}{x^2 + 4} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) + C_2. \] ### Step 8: Combine results Thus, the complete integral is: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} \, dx = \log \left| \frac{x + 1}{x - 1} \right| + \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) + C. \] ### Step 9: Identify constants a and b From the given expression \(a \log \left( \frac{x + 1}{x - 1} \right) + b \tan^{-1} \left( x \right)/2\), we can identify: - \(a = 1\) - \(b = 1\) ### Final Answer Thus, the values of \(a\) and \(b\) are: \[ (a, b) = (1, 1). \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

int(x^(2)tan^(-1)x)/(1+x^(2))dx

prove that int(x^(2))/((x^(2)+1)(x^(2)+4))dx=-(1)/(3)tan^(-1)x+(2)/(3)tan^(-1)((x)/(2))+

int((x^(5)+x^(4)+4x^(3)+4x^(2)+4x+4))/((x^(2)+2)^(3))dx=Alog|x^(2)+2|+(1)/(sqrt(2))tan^(-1)((x)/(B))+c then B^(1/A) is equal to

int(x^(4)-2x^(2)+4x+1)/(x^(3)-x^(2)-x+1)dx