Home
Class 12
MATHS
Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 a...

Let `f(x)=x/((1+x^n)^(1/ n))` for `ngeq2` and `g(x)=(f(ofo ...of)(x)` Then `intx^(n-2)g(x)dx` equals

A

`(1)/(n(n-1))(1+nx^(n))^(1-(1)/(n))+k`

B

`(1)/(n-1)(1+nx^(n))^(1-(1)/(n))+k`

C

`(1)/(n(n-1))(1+nx^(n))^(1+(1)/(n))+k`

D

`(1)/(n-1)(1+nx^(n))^(1+(1)/(n))+k`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x)/((1+x^(n))^((1)/(n))) for n>=2 and g(x)=(f(ofo...of)(x) Then int x^(n-2)g(x)dx equals

Let f(x)=x/(1+x^n)^(1/n) for nge2 and g(x)=ubrace(fofo…of)_("f occurs n times")(x) . Then intx^(n-2)g(x)dx equals (A) 1/(n(n-1))(1+nx^n)^(1-1/n)+K (B) 1/(n-1)(1+nx^n)^(1-1/n)+K (C) 1/(n(n+1))(1+nx^n)^(1+1/n)+K (D) 1/(n+1)(1+nx^n)^(1-1/n)+K

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

If g is the inverse of f and f'(x)=(1)/(2+x^(n)) , then g'(x) is equal to

If g is the inverse of f and f'(x)=(1)/(2+x^(n)) then g'(x) is equal to