Home
Class 12
MATHS
int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is...

`int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx` is equal to

A

`tan^(-1)sqrt((x^(2)+x+1)/(x))+C`

B

`2tan^(-1)sqrt((x^(2)+x+1)/(x))+C`

C

`3tan^(-1)sqrt((x^(2)+x+1)/(x))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x-1}{(x+1)\sqrt{x^3+x^2+x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We start by rewriting the integrand: \[ \frac{x-1}{(x+1)\sqrt{x^3+x^2+x}} = \frac{x-1}{(x+1)\sqrt{x(x^2+x+1)}}. \] ### Step 2: Split the fraction We can separate the fraction into two parts: \[ \frac{x-1}{x+1} \cdot \frac{1}{\sqrt{x^3+x^2+x}}. \] This gives us: \[ \frac{x-1}{x+1} = 1 - \frac{2}{x+1}. \] Thus, we can rewrite the integral as: \[ \int \left(1 - \frac{2}{x+1}\right) \cdot \frac{1}{\sqrt{x^3+x^2+x}} \, dx. \] ### Step 3: Rewrite the square root Next, we simplify the square root in the denominator: \[ \sqrt{x^3+x^2+x} = \sqrt{x(x^2+x+1)}. \] ### Step 4: Substitute \( t = \sqrt{x} \) Let \( x = t^2 \), then \( dx = 2t \, dt \). The integral becomes: \[ \int \left(1 - \frac{2}{t^2+1}\right) \cdot \frac{2t}{\sqrt{t^6+t^4+t^2}} \, dt. \] ### Step 5: Simplify further Now we simplify the integral: \[ \sqrt{t^6+t^4+t^2} = t\sqrt{t^4+t^2+1}. \] Thus, the integral simplifies to: \[ \int \left(1 - \frac{2}{t^2+1}\right) \cdot \frac{2}{\sqrt{t^4+t^2+1}} \, dt. \] ### Step 6: Integrate Now we can integrate term by term. The integral can be split into two parts: 1. \(\int \frac{2}{\sqrt{t^4+t^2+1}} \, dt\) 2. \(-2 \int \frac{1}{(t^2+1)\sqrt{t^4+t^2+1}} \, dt\) ### Step 7: Final substitution After performing the integration, we substitute back \( t = \sqrt{x} \) to express the result in terms of \( x \). ### Final Result The final result after integration and substitution will be: \[ \text{Result} = 2 \tan^{-1} \left(\frac{\sqrt{x}}{\sqrt{x+1}}\right) + C, \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

What is int(x^(4)-1)/(x^(2)sqrt(x^(4)+x^(2)+1))dx equal to ?

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx is equal to

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

int(1)/(sqrt(8+2x-x^(2)))dx is equal to