Home
Class 12
MATHS
If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(...

If `int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C` , then

A

`A=(1)/(2),B=1`

B

`A=1,B=-(1)/(2)`

C

`A=-(1)/(2),B=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^3 + x^4} \, dx \) and express it in the form \( \frac{A}{x^2} + \frac{B}{x} + \log\left|\frac{x}{x+1}\right| + C \), we will follow these steps: ### Step 1: Simplify the integrand First, we can factor the denominator: \[ x^3 + x^4 = x^3(1 + x) \] Thus, we can rewrite the integral as: \[ \int \frac{1}{x^3(1+x)} \, dx \] ### Step 2: Use Partial Fraction Decomposition We will express \( \frac{1}{x^3(1+x)} \) using partial fractions: \[ \frac{1}{x^3(1+x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{1+x} \] To find the coefficients \( A, B, C, D \), we multiply both sides by the denominator \( x^3(1+x) \): \[ 1 = A x^2(1+x) + B x(1+x) + C(1+x) + D x^3 \] ### Step 3: Expand and Collect Terms Expanding the right-hand side: \[ 1 = A x^2 + A x^3 + B x + B x^2 + C + C x + D x^3 \] Combining like terms gives: \[ 1 = (A + D)x^3 + (A + B)x^2 + (B + C)x + C \] ### Step 4: Set Up the System of Equations Now, we can set up the equations based on the coefficients: 1. \( A + D = 0 \) (coefficient of \( x^3 \)) 2. \( A + B = 0 \) (coefficient of \( x^2 \)) 3. \( B + C = 0 \) (coefficient of \( x \)) 4. \( C = 1 \) (constant term) ### Step 5: Solve the System From equation 4, we have \( C = 1 \). Substituting \( C \) into equation 3: \[ B + 1 = 0 \implies B = -1 \] Substituting \( B \) into equation 2: \[ A - 1 = 0 \implies A = 1 \] Substituting \( A \) into equation 1: \[ 1 + D = 0 \implies D = -1 \] ### Step 6: Write the Partial Fraction Decomposition Now we have: \[ \frac{1}{x^3(1+x)} = \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{1+x} \] ### Step 7: Integrate Each Term Now we can integrate each term: \[ \int \left( \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{1+x} \right) dx \] This gives: \[ \int \frac{1}{x} \, dx - \int \frac{1}{x^2} \, dx + \int \frac{1}{x^3} \, dx - \int \frac{1}{1+x} \, dx \] Calculating each integral: 1. \( \int \frac{1}{x} \, dx = \log|x| \) 2. \( \int \frac{1}{x^2} \, dx = -\frac{1}{x} \) 3. \( \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \) 4. \( \int \frac{1}{1+x} \, dx = \log|1+x| \) ### Step 8: Combine the Results Combining these results, we have: \[ \log|x| - \left(-\frac{1}{x}\right) - \frac{1}{2x^2} - \log|1+x| + C \] This simplifies to: \[ \log\left|\frac{x}{1+x}\right| + \frac{1}{x} - \frac{1}{2x^2} + C \] ### Final Form Thus, we can express the integral as: \[ \int \frac{1}{x^3 + x^4} \, dx = \frac{1}{x} - \frac{1}{2x^2} + \log\left|\frac{x}{1+x}\right| + C \] Comparing with the given form, we find: - \( A = -\frac{1}{2} \) - \( B = 1 \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

int(1)/(x(3+log x))dx

If int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)/(a))+B log|(a+x)/(a-x)|+C ,then (A,B)=

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

int_(1)^(3)(log x)/(x)dx

int(ln x)/((1+x)^(3))dx

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

If int(1+x+x^(2))/(x^(2)+x^(3))dx=(a)/(x)+b.log(x+1)+c, then

(b) int_(1)^(3)(cos(log x^(2)))/(x)dx