Home
Class 12
MATHS
int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal...

`int(sqrt(x))/(1+4sqrt(x^(3)))dx` is equal to

A

`(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`

B

`(4)/(3)[1+x^(3//4)-log_(e)(1+x^(3//4))]+C`

C

`(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x}}{1 + 4\sqrt{x^3}} \, dx \), we will use a substitution method. Let's go through the steps systematically. ### Step 1: Substitution Let \( t = 1 + 4\sqrt{x^3} \). ### Step 2: Differentiate \( t \) To find \( dt \), we need to differentiate \( t \) with respect to \( x \): \[ t = 1 + 4\sqrt{x^3} \] Differentiating both sides: \[ \frac{dt}{dx} = 4 \cdot \frac{1}{2\sqrt{x^3}} \cdot 3x^2 = \frac{6x^2}{\sqrt{x^3}} = \frac{6x^2}{x^{3/2}} = 6x^{1/2} \] Thus, we have: \[ dt = 6\sqrt{x} \, dx \quad \Rightarrow \quad dx = \frac{dt}{6\sqrt{x}} \] ### Step 3: Express \( \sqrt{x} \) in terms of \( t \) From our substitution: \[ 4\sqrt{x^3} = t - 1 \quad \Rightarrow \quad \sqrt{x^3} = \frac{t - 1}{4} \quad \Rightarrow \quad \sqrt{x} = \left(\frac{t - 1}{4}\right)^{2/3} \] ### Step 4: Substitute back into the integral Now substitute \( \sqrt{x} \) and \( dx \) into the integral: \[ \int \frac{\sqrt{x}}{1 + 4\sqrt{x^3}} \, dx = \int \frac{\left(\frac{t - 1}{4}\right)^{2/3}}{t} \cdot \frac{dt}{6\left(\frac{t - 1}{4}\right)^{1/3}} \] This simplifies to: \[ \int \frac{(t - 1)^{2/3}}{6t \cdot 4^{2/3}} \cdot \frac{dt}{(t - 1)^{1/3}} = \int \frac{(t - 1)^{1}}{24t} \, dt \] ### Step 5: Simplify the integral Now we can simplify the integral: \[ \int \frac{(t - 1)}{24t} \, dt = \frac{1}{24} \int \left(1 - \frac{1}{t}\right) \, dt = \frac{1}{24} \left(t - \log|t|\right) + C \] ### Step 6: Substitute back \( t \) Now substitute back \( t = 1 + 4\sqrt{x^3} \): \[ = \frac{1}{24} \left(1 + 4\sqrt{x^3} - \log|1 + 4\sqrt{x^3}|\right) + C \] ### Final Answer Thus, the integral \( \int \frac{\sqrt{x}}{1 + 4\sqrt{x^3}} \, dx \) is equal to: \[ \frac{1 + 4\sqrt{x^3}}{24} - \frac{1}{24} \log|1 + 4\sqrt{x^3}| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

int(1)/(sqrt(9x-4x^(2)))dx is equal to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

inte^(sqrt(x))dx is equal to

int(x)/(sqrt(1-x^(4)))dx

int(3^(x))/(sqrt(9^(x)-1))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(dx)/((x+1)sqrt(4x+3)) is equal to