Home
Class 12
MATHS
If f(n)(x),g(n)(x),h(n)(x),n=1, 2, 3 are...

If` f_(n)(x),g_(n)(x),h_(n)(x),n=1, 2, 3` are polynomials in x such that `f_(n)(a)=g_(n)(a)=h_(n)(a),n=1,2,3` and
`F(x)=|{:(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(1)(x),h_(2)(x),h_(3)(x)):}|`. Then, F' (a) is equal to

A

0

B

`f_(1)(a)g_(2)(a)h_(3)(a)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the derivative \( F'(a) \) of the determinant defined by the polynomials \( f_n(x), g_n(x), h_n(x) \) at the point \( x = a \). ### Step 1: Define the Function The function \( F(x) \) is given as the determinant of the matrix formed by the polynomials: \[ F(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} \] ### Step 2: Differentiate the Determinant To differentiate \( F(x) \), we can use the property of determinants that allows us to differentiate one row at a time. The derivative \( F'(x) \) can be expressed as: \[ F'(x) = \begin{vmatrix} f_1'(x) & f_2'(x) & f_3'(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1'(x) & g_2'(x) & g_3'(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1'(x) & h_2'(x) & h_3'(x) \end{vmatrix} \] ### Step 3: Evaluate at \( x = a \) Now, we substitute \( x = a \) into the expression for \( F'(x) \): \[ F'(a) = \begin{vmatrix} f_1'(a) & f_2'(a) & f_3'(a) \\ g_1(a) & g_2(a) & g_3(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1'(a) & g_2'(a) & g_3'(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1(a) & g_2(a) & g_3(a) \\ h_1'(a) & h_2'(a) & h_3'(a) \end{vmatrix} \] ### Step 4: Use the Given Conditions Since we know that \( f_n(a) = g_n(a) = h_n(a) \) for \( n = 1, 2, 3 \), we can simplify the determinants: - In each determinant, the rows will have identical values for \( f_n(a), g_n(a), h_n(a) \), leading to the determinant being zero. Thus, we conclude: \[ F'(a) = 0 + 0 + 0 = 0 \] ### Final Answer \[ F'(a) = 0 \]

To solve the problem step by step, we need to find the derivative \( F'(a) \) of the determinant defined by the polynomials \( f_n(x), g_n(x), h_n(x) \) at the point \( x = a \). ### Step 1: Define the Function The function \( F(x) \) is given as the determinant of the matrix formed by the polynomials: \[ F(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Exercise|60 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .

If f_r(x),g_r(x),h_r(x),r=1,2,3 are polynomials such that f_r(a)=g_r(a)=h_r(a),r=1,2,3a n d F(x)=|[f_1(x),f_2(x),f_3(x)],[g_1(x),g_2(x),g_3(x)],[h_1(x),h_2(x),h_3(x)]| then F^(prime)(x)a tx=a is____________________

If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

a_(0)f^(n)(x)+a_(1)f^(n-1)(x)*g(x)+a_(2)f^(n-2)g^(2)(x)+......+a_(n)g^(n)(x)>=0

Let f(x)=(1-x^(n+1))/(1-x) and g(x)=1-(2)/(x)+(3)/(x^(2))-...+(-1)^(n)(n+1)/(x^(n)) Then the constant term in f'(x)xx g(x) is equal to -

If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+ n^(x) , "then" f''(1) is equal to

if quad f(x)=x+(x^(2))/(1)!+(x^(3))/(3)!+--+(x^(n))/(n)! then f(0)+f'(0)+f''(0)+ is equal to

If f(x),g(x),h(x) are polynomials in x of degree 2 If F(x)=det[[f',g,hf',g',h'f'',g'',h'']] then F'(x) is

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a)(f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c)f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

OBJECTIVE RD SHARMA-DIFFERENTIATION-Chapter Test
  1. If f(n)(x),g(n)(x),h(n)(x),n=1, 2, 3 are polynomials in x such that f(...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

    Text Solution

    |

  5. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. If f(x) is a polynomial of degree n(gt2) and f(x)=f(alpha-x), (where ...

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^(n), then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f...

    Text Solution

    |

  10. xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f'(x)+f(x)=

    Text Solution

    |

  18. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |