Home
Class 12
MATHS
If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))...

If `sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=loga` then `(dy)/(dx)` equals

A

`(x)/(y)`

B

`(y)/(x^(2))`

C

`(x^(2)-y^(2))/(x^(2)+y^(2))`

D

`(y)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the equation given in the question. Let's go through the steps systematically. ### Step 1: Start with the given equation The equation provided is: \[ \sin^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = \log a \] ### Step 2: Differentiate both sides with respect to \(x\) Using implicit differentiation, we differentiate both sides: \[ \frac{d}{dx}\left(\sin^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right)\right) = \frac{d}{dx}(\log a) \] Since \(a\) is a constant, the derivative of \(\log a\) is \(0\). ### Step 3: Apply the chain rule on the left side Using the chain rule: \[ \frac{1}{\sqrt{1 - \left(\frac{x^2 - y^2}{x^2 + y^2}\right)^2}} \cdot \frac{d}{dx}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = 0 \] ### Step 4: Differentiate the fraction using the quotient rule Let \(u = x^2 - y^2\) and \(v = x^2 + y^2\). Then, using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(du/dx\) and \(dv/dx\): - \(du/dx = 2x - 2y \frac{dy}{dx}\) - \(dv/dx = 2x + 2y \frac{dy}{dx}\) Substituting these into the quotient rule gives: \[ \frac{(x^2 + y^2)(2x - 2y \frac{dy}{dx}) - (x^2 - y^2)(2x + 2y \frac{dy}{dx})}{(x^2 + y^2)^2} \] ### Step 5: Set the derivative equal to zero Since the left side equals zero: \[ \frac{(x^2 + y^2)(2x - 2y \frac{dy}{dx}) - (x^2 - y^2)(2x + 2y \frac{dy}{dx})}{(x^2 + y^2)^2} = 0 \] ### Step 6: Simplify the equation The numerator must equal zero: \[ (x^2 + y^2)(2x - 2y \frac{dy}{dx}) - (x^2 - y^2)(2x + 2y \frac{dy}{dx}) = 0 \] ### Step 7: Expand and collect like terms Expanding gives: \[ 2x(x^2 + y^2) - 2y(x^2 + y^2)\frac{dy}{dx} - 2x(x^2 - y^2) - 2y(x^2 - y^2)\frac{dy}{dx} = 0 \] Combining like terms leads to: \[ 2x^3 + 2xy^2 - 2x^3 + 2y^3 + (-2y(x^2 + y^2) - 2y(x^2 - y^2))\frac{dy}{dx} = 0 \] This simplifies to: \[ 2y^3 - 2y(2x^2)\frac{dy}{dx} = 0 \] ### Step 8: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ 2y^3 = 4xy^2\frac{dy}{dx} \] Thus: \[ \frac{dy}{dx} = \frac{y^3}{2xy^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y}{2x} \] ### Final Answer \[ \frac{dy}{dx} = \frac{y}{x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x^(2)), then (dy)/(dx) equals

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If x^(2)+y^(2)=4, then y(dy)/(dx)+x is equal to

if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If x+y=2^(y), then (dy)/(dx) equals-

If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

If y =sin (x^(2) +x) ,then (dy)/(dx) =

OBJECTIVE RD SHARMA-DIFFERENTIATION-Exercise
  1. If f(x)=(log(cotx)tanx)(log(tanx)cotx)^(-1) +tan^(-1)((4x)/(sqrt(4-x...

    Text Solution

    |

  2. If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

    Text Solution

    |

  3. If sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=loga then (dy)/(dx) equals

    Text Solution

    |

  4. If y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1([sqrtx-1]/[sqrtx+1]), then dy/...

    Text Solution

    |

  5. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  6. y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy...

    Text Solution

    |

  7. If y=int(0)^(x) f(t)sin{k(x-t)} dt, then (d^(2)y)/(dx^(2))+k^(2) y equ...

    Text Solution

    |

  8. If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}|, where p i...

    Text Solution

    |

  9. If f(x)=x+2," then "f'(f(x))" at "x=4, is

    Text Solution

    |

  10. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  11. If x=acostheta,y=bsintheta," then"(d^(3)y)/(dx^(3)) is equal to

    Text Solution

    |

  12. If f(1)=1" and "f'(1)=2, then lim(x to 1) (sqrt(f(x))-1)/(sqrt(x)-1) e...

    Text Solution

    |

  13. If variables x and y are related by the equation x=int(0)^(y)(1)/(sq...

    Text Solution

    |

  14. If Q. 43, (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  15. The differential coefficient of a^(log10" cosec"^(-1)x), is

    Text Solution

    |

  16. f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) the...

    Text Solution

    |

  17. If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta),...

    Text Solution

    |

  18. If y=cos2xcos3x, then y(n) is equal to

    Text Solution

    |

  19. If f(x)=(x+1)tan^(-1)(e^(-2x)), then f'(0) is

    Text Solution

    |

  20. if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

    Text Solution

    |