Home
Class 12
MATHS
For x in R , x ne0, 1, let f(0)(x)=(1)...

For ` x in R , x ne0, 1, ` let `f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2…..` Then the value of `f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2))` is equal to

A

`(4)/(3)`

B

`(1)/(3)`

C

`(5)/(3)`

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the values of \( f_{100}(3) + f_{1}\left(\frac{2}{3}\right) + f_{2}\left(\frac{3}{2}\right) \) based on the recursive function definitions provided. ### Step 1: Define the Functions We have: - \( f_0(x) = \frac{1}{1-x} \) - \( f_{n+1}(x) = f_0(f_n(x)) \) ### Step 2: Calculate \( f_1(x) \) Using the definition: \[ f_1(x) = f_0(f_0(x)) = f_0\left(\frac{1}{1-x}\right) \] Calculating \( f_0\left(\frac{1}{1-x}\right) \): \[ f_0\left(\frac{1}{1-x}\right) = \frac{1}{1 - \frac{1}{1-x}} = \frac{1}{\frac{(1-x)-1}{1-x}} = \frac{1-x}{-x} = \frac{x-1}{x} \] Thus, we have: \[ f_1(x) = \frac{x-1}{x} \] ### Step 3: Calculate \( f_2(x) \) Next, we calculate \( f_2(x) \): \[ f_2(x) = f_0(f_1(x)) = f_0\left(\frac{x-1}{x}\right) \] Calculating \( f_0\left(\frac{x-1}{x}\right) \): \[ f_0\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}} = \frac{1}{\frac{x - (x-1)}{x}} = \frac{x}{1} = x \] Thus, we have: \[ f_2(x) = x \] ### Step 4: Calculate \( f_3(x) \) Next, we calculate \( f_3(x) \): \[ f_3(x) = f_0(f_2(x)) = f_0(x) \] Calculating \( f_0(x) \): \[ f_0(x) = \frac{1}{1-x} \] Thus, we have: \[ f_3(x) = \frac{1}{1-x} \] ### Step 5: Identify the Pattern From the calculations, we can see a pattern: - \( f_0(x) = \frac{1}{1-x} \) - \( f_1(x) = \frac{x-1}{x} \) - \( f_2(x) = x \) - \( f_3(x) = \frac{1}{1-x} \) - \( f_4(x) = \frac{x-1}{x} \) - \( f_5(x) = x \) - This pattern repeats every 3 steps. ### Step 6: Calculate \( f_{100}(x) \) Since \( 100 \mod 3 = 1 \), we have: \[ f_{100}(x) = f_1(x) = \frac{x-1}{x} \] Thus: \[ f_{100}(3) = \frac{3-1}{3} = \frac{2}{3} \] ### Step 7: Calculate \( f_1\left(\frac{2}{3}\right) \) Using \( f_1(x) = \frac{x-1}{x} \): \[ f_1\left(\frac{2}{3}\right) = \frac{\frac{2}{3} - 1}{\frac{2}{3}} = \frac{\frac{2}{3} - \frac{3}{3}}{\frac{2}{3}} = \frac{-\frac{1}{3}}{\frac{2}{3}} = -\frac{1}{2} \] ### Step 8: Calculate \( f_2\left(\frac{3}{2}\right) \) Using \( f_2(x) = x \): \[ f_2\left(\frac{3}{2}\right) = \frac{3}{2} \] ### Step 9: Combine the Results Now, we combine the results: \[ f_{100}(3) + f_1\left(\frac{2}{3}\right) + f_2\left(\frac{3}{2}\right) = \frac{2}{3} - \frac{1}{2} + \frac{3}{2} \] Finding a common denominator (6): \[ = \frac{4}{6} - \frac{3}{6} + \frac{9}{6} = \frac{4 - 3 + 9}{6} = \frac{10}{6} = \frac{5}{3} \] ### Final Answer Thus, the final value is: \[ \frac{5}{3} \]

To solve the problem, we need to compute the values of \( f_{100}(3) + f_{1}\left(\frac{2}{3}\right) + f_{2}\left(\frac{3}{2}\right) \) based on the recursive function definitions provided. ### Step 1: Define the Functions We have: - \( f_0(x) = \frac{1}{1-x} \) - \( f_{n+1}(x) = f_0(f_n(x)) \) ### Step 2: Calculate \( f_1(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

For x varepsilon R,x!=0,x!=1, Let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2,3...... Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to:

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is

If f(x)=(a^(x))/(a^(x)+sqrt(a)),(a>0), then find the value of sum_(r=1)^(2n1)2f((r)/(2n))

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

For x in R-{0,1}, let f_(1)(x)=(1)/(x),f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions.If a function,J(x) satisfies (f_(2)oJof_(1))(x)=f_(3)(x) then J(x) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f(x)=(1+x)^(n), then the value of f(0)+f'(0)+(f^(n)(0))/(2!)+(f'''(0))/(3!)+......(f^(n)(0))/(n!)

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Chapter Test
  1. For x in R , x ne0, 1, let f(0)(x)=(1)/(1-x) and f(n+1)(x)=f(0)(f(n)...

    Text Solution

    |

  2. The period of the function f(x)=sin^(4)3x+cos^(4)3x, is

    Text Solution

    |

  3. The value of integer n for which the function f(x)=(sinx)/(sin(x / n)...

    Text Solution

    |

  4. The period of the function f(x)=sin((2x+3)/(6pi)), is

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  6. Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

    Text Solution

    |

  7. Let f(x)=(sqrt(sinx))/(1+3sqrt(sinx)) then domain f contains

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R, where [x] i...

    Text Solution

    |

  9. If N denotes the set of all positive integers and if f : N -> N is def...

    Text Solution

    |

  10. The set of value of a for which the function f(x)=sinx+[(x^(2))/(a)] d...

    Text Solution

    |

  11. If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt ...

    Text Solution

    |

  12. Find the equivalent definition of f(x)=m a xdot{x^2,(-x)^2,2x(1-x)}w h...

    Text Solution

    |

  13. If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

    Text Solution

    |

  14. The function f(x) is defined in [0,1] . Find the domain of f(t a nx)do...

    Text Solution

    |

  15. The domain of definition of the real function f(x)=sqrt(log(12)x^(2)) ...

    Text Solution

    |

  16. The values of ba n dc for which the identity of f(x+1)-f(x)=8x+3 is sa...

    Text Solution

    |

  17. The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is p...

    Text Solution

    |

  18. The period of the function sin""((pix)/(2))+cos((pix)/(2)), is

    Text Solution

    |

  19. The equivalent definition of f(x)=max.{-1|1-x^(2),2|x|-2,1-(7)/(2)|x|}...

    Text Solution

    |

  20. If x in R, then f(x)=sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  21. If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

    Text Solution

    |