Home
Class 12
MATHS
Let f :(4,6) → (6,8) be a function defi...

Let `f :(4,6) → (6,8)` be a function defined by `f(x) = x+[(x)/(2)]` where [.] denotes the greatest integer function, then `f^(-1)(x)` is equal to

A

`x - [ (x)/(2)]`

B

`- x - 2 `

C

`x - 2 `

D

`(1)/(x + [(x)/(2)]) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x + \left\lfloor \frac{x}{2} \right\rfloor \) defined on the interval \( (4, 6) \) and mapping to \( (6, 8) \), we will follow these steps: ### Step 1: Determine the range of \( \left\lfloor \frac{x}{2} \right\rfloor \) Since \( x \) is in the interval \( (4, 6) \): - The minimum value of \( \frac{x}{2} \) when \( x = 4 \) is \( \frac{4}{2} = 2 \). - The maximum value of \( \frac{x}{2} \) when \( x = 6 \) is \( \frac{6}{2} = 3 \). Thus, \( \frac{x}{2} \) ranges from \( 2 \) to \( 3 \). Therefore, the greatest integer function \( \left\lfloor \frac{x}{2} \right\rfloor \) will take the value \( 2 \) for all \( x \) in \( (4, 6) \). ### Step 2: Simplify the function Since \( \left\lfloor \frac{x}{2} \right\rfloor = 2 \) for \( x \in (4, 6) \), we can simplify the function: \[ f(x) = x + 2 \] ### Step 3: Set up the equation for the inverse To find the inverse function \( f^{-1}(x) \), we start with: \[ y = f(x) = x + 2 \] Now, we need to express \( x \) in terms of \( y \): \[ y = x + 2 \implies x = y - 2 \] ### Step 4: Write the inverse function Thus, we can express the inverse function as: \[ f^{-1}(x) = x - 2 \] ### Conclusion The inverse function \( f^{-1}(x) \) is: \[ f^{-1}(x) = x - 2 \]

To find the inverse of the function \( f(x) = x + \left\lfloor \frac{x}{2} \right\rfloor \) defined on the interval \( (4, 6) \) and mapping to \( (6, 8) \), we will follow these steps: ### Step 1: Determine the range of \( \left\lfloor \frac{x}{2} \right\rfloor \) Since \( x \) is in the interval \( (4, 6) \): - The minimum value of \( \frac{x}{2} \) when \( x = 4 \) is \( \frac{4}{2} = 2 \). - The maximum value of \( \frac{x}{2} \) when \( x = 6 \) is \( \frac{6}{2} = 3 \). Thus, \( \frac{x}{2} \) ranges from \( 2 \) to \( 3 \). Therefore, the greatest integer function \( \left\lfloor \frac{x}{2} \right\rfloor \) will take the value \( 2 \) for all \( x \) in \( (4, 6) \). ...
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|95 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=[|x|], wherel.] denotes the greatest integer function,then f'(-1) is

If f:Irarr I be defined by f(x)=[x+1] ,where [.] denotes the greatest integer function then f(x) is equal to

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Section I - Solved Mcqs
  1. If[.] and {.} denote greatest integer and fractional part functions r...

    Text Solution

    |

  2. The domain of the funciton f(x) given by 3^(x) + 3^(f) = "min" (2t^(3...

    Text Solution

    |

  3. Let f :(4,6) → (6,8) be a function defined by f(x) = x+[(x)/(2)] wher...

    Text Solution

    |

  4. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  5. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is

    Text Solution

    |

  6. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  7. If f: R toS, defined by f(x) = sin x -sqrt(3) cos x + 1, is onto then ...

    Text Solution

    |

  8. If the graph of the function y = f(x) is symmetrical about the line x ...

    Text Solution

    |

  9. The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) ...

    Text Solution

    |

  10. find the value of the

    Text Solution

    |

  11. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  12. Let f(x)=sin[pi/6sin(pi/2sinx)] for all x in RR

    Text Solution

    |

  13. Consider the function f defined on the set of all non-negative interg...

    Text Solution

    |

  14. In a function 2f(x)+ xf(1/x)-2f(|sqrt2sin(pi(x+1/4))|)=4cos^2[(pix)/2]...

    Text Solution

    |

  15. Let X be the set of all positive such that f(x+y) = f(xy) for all x g...

    Text Solution

    |

  16. f(x) = 9^x/ ( 1 + 9^x) then value of f(1/2015) + f(2/2015) .......+ f(...

    Text Solution

    |

  17. Range of the function f(x)=sqrt(cos^(- 1)(sqrt(log4x))-pi/2)+sin^(- 1)...

    Text Solution

    |

  18. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  19. Let f(n)=1+1/2+1/3++1/ndot Then f(1)+f(2)+f(3)++f(n) is equal to nf(n)...

    Text Solution

    |

  20. The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)...

    Text Solution

    |