Home
Class 12
MATHS
The function f(x) given by f(x)=(sin 8x ...

The function f(x) given by `f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x)` , is

A

periodic with period `pi`

B

periodic with period `2 pi`

C

periodic with period `pi//2`

D

not periodic

Text Solution

AI Generated Solution

The correct Answer is:
To determine the periodicity of the function \( f(x) = \frac{\sin(8x) \cos(x) - \sin(6x) \cos(3x)}{\cos(x) \cos(2x) - \sin(3x) \sin(4x)} \), we will simplify the expression step by step. ### Step 1: Simplify the numerator The numerator is \( \sin(8x) \cos(x) - \sin(6x) \cos(3x) \). We can use the product-to-sum identities to simplify this. Using the identity: \[ \sin A \cos B = \frac{1}{2} (\sin(A+B) + \sin(A-B)) \] we can rewrite each term: 1. For \( \sin(8x) \cos(x) \): \[ \sin(8x) \cos(x) = \frac{1}{2} (\sin(9x) + \sin(7x)) \] 2. For \( \sin(6x) \cos(3x) \): \[ \sin(6x) \cos(3x) = \frac{1}{2} (\sin(9x) + \sin(3x)) \] Thus, the numerator becomes: \[ \frac{1}{2} (\sin(9x) + \sin(7x)) - \frac{1}{2} (\sin(9x) + \sin(3x)) = \frac{1}{2} (\sin(7x) - \sin(3x)) \] ### Step 2: Simplify the denominator The denominator is \( \cos(x) \cos(2x) - \sin(3x) \sin(4x) \). We can also use the product-to-sum identities here. Using the identity: \[ \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \] we rewrite: 1. For \( \cos(x) \cos(2x) \): \[ \cos(x) \cos(2x) = \frac{1}{2} (\cos(3x) + \cos(x)) \] 2. For \( \sin(3x) \sin(4x) \): \[ \sin(3x) \sin(4x) = \frac{1}{2} (\cos(1x) - \cos(7x)) \] Thus, the denominator becomes: \[ \frac{1}{2} (\cos(3x) + \cos(x)) - \frac{1}{2} (\cos(1x) - \cos(7x)) = \frac{1}{2} (\cos(3x) + \cos(x) - \cos(1x) + \cos(7x)) \] ### Step 3: Combine the results Now we can rewrite the function: \[ f(x) = \frac{\frac{1}{2} (\sin(7x) - \sin(3x))}{\frac{1}{2} (\cos(3x) + \cos(x) - \cos(1x) + \cos(7x))} \] This simplifies to: \[ f(x) = \frac{\sin(7x) - \sin(3x)}{\cos(3x) + \cos(x) - \cos(1x) + \cos(7x)} \] ### Step 4: Determine periodicity To find the period of \( f(x) \), we need to consider the periodicity of the sine and cosine functions involved. The sine and cosine functions have a fundamental period of \( 2\pi \). 1. The terms \( \sin(7x) \) and \( \sin(3x) \) have periods \( \frac{2\pi}{7} \) and \( \frac{2\pi}{3} \) respectively. 2. The terms \( \cos(3x) \), \( \cos(x) \), \( \cos(1x) \), and \( \cos(7x) \) have periods \( \frac{2\pi}{3} \), \( 2\pi \), \( 2\pi \), and \( \frac{2\pi}{7} \) respectively. The least common multiple (LCM) of the periods will give us the period of the function \( f(x) \). The LCM of \( \frac{2\pi}{7} \) and \( \frac{2\pi}{3} \) is \( \frac{2\pi}{21} \). ### Conclusion Thus, the function \( f(x) \) is periodic with a period of \( \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=

(sin x + sin 3x)/(cos x - cos 3x) = ?

8cos x cos2x cos4x = (sin6x) / (sin x)

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

the range of the function f defined by f(x)=(sin x cos3x)/(sin3x*cos x)is

The function f(x) = sin x + cos x will be

The function f(x)=(a sin x+b cos x)/(c sin x+d cos x) is decreasing,if

(sin3x + sin x) sin x + (cos3x-cos x) cos x = 0

(sin 3x + sin x) sin x + (cos 3x - cos x) cos x =0

The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Exercise
  1. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  2. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  3. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  4. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  5. Let f (x)=|x-2|+|x - 3|+|x-4| and g(x) = f(x+1). Then 1. g(x) is an ev...

    Text Solution

    |

  6. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  7. If f(x)=sqrt(|3^(x)-3^(1)|-2) and g(x)=tan pi x, then domain of fog(x)...

    Text Solution

    |

  8. Find the range of f(x)=sqrt(sin(cos x))+sqrt(cos(sin x)).

    Text Solution

    |

  9. The domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))), is

    Text Solution

    |

  10. If f: R to R and g: R to R are defined by f(x)=2x+3 and g(x)=x^(2)+7 ,...

    Text Solution

    |

  11. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  12. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  13. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  14. The domain of the function f(x)=log(3+x)(x^2-1) is

    Text Solution

    |

  15. Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the g...

    Text Solution

    |

  16. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  17. Domain of (sqrt(s^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |

  18. The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x}, is ( ...

    Text Solution

    |

  19. If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n i...

    Text Solution

    |

  20. Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1...

    Text Solution

    |