Home
Class 12
MATHS
The domain of definition of f(x)=sqrt((...

The domain of definition of `f(x)=sqrt((log_(0.3)|x-2|)/(|x|))`, is

A

`[1,2) cup (2,3]`

B

`[1,3]`

C

`R-(1,3]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{\log_{0.3} |x-2|}{|x|}} \), we need to ensure that the expression inside the square root is positive. This leads us to the following conditions: 1. The logarithmic expression must be greater than zero: \[ \log_{0.3} \left( \frac{|x-2|}{|x|} \right) > 0 \] 2. The denominator must not be zero: \[ |x| \neq 0 \quad \Rightarrow \quad x \neq 0 \] ### Step 1: Solve the logarithmic inequality The logarithm \( \log_{0.3}(y) > 0 \) implies that \( y < 1 \) because the base \( 0.3 < 1 \). Thus, we have: \[ \frac{|x-2|}{|x|} < 1 \] This can be rewritten as: \[ |x-2| < |x| \] ### Step 2: Analyze the absolute value inequality We will consider different cases based on the value of \( x \). #### Case 1: \( x > 2 \) In this case, \( |x-2| = x - 2 \) and \( |x| = x \): \[ x - 2 < x \quad \text{(Always true)} \] #### Case 2: \( 0 < x < 2 \) Here, \( |x-2| = 2 - x \) and \( |x| = x \): \[ 2 - x < x \quad \Rightarrow \quad 2 < 2x \quad \Rightarrow \quad x > 1 \] Thus, for this case, \( 1 < x < 2 \). #### Case 3: \( x < 0 \) In this case, \( |x-2| = 2 - x \) and \( |x| = -x \): \[ 2 - x < -x \quad \Rightarrow \quad 2 < 0 \quad \text{(Not possible)} \] Thus, there are no valid solutions in this case. ### Step 3: Combine the results From the analysis, we have: - For \( x > 2 \): Valid for all \( x > 2 \). - For \( 0 < x < 2 \): Valid for \( 1 < x < 2 \). ### Step 4: Exclude \( x = 0 \) Since \( |x| \) cannot be zero, we exclude \( x = 0 \). ### Final Domain Combining the valid intervals, the domain of \( f(x) \) is: \[ (1, 2) \cup (2, \infty) \] ### Summary of the Domain The domain of the function \( f(x) \) is: \[ \boxed{(1, 2) \cup (2, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|95 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function: f(x)=sqrt(((log)_(0.3)|x-2|)/(|x|))

The domain of definition of f(x)=log_(3)|log_(e)x| , is

Find the domain f(x)=sqrt((log_(0.3)|x-2|)/(|x|)) .

The domain of definition of f(x) = sqrt(e^((cos^-1(log_(4) x^(2))) is

The domain of definition of f(x)=log x cos x is

The domain of definition of f(x)=(log_(2)(x+3))/(x^(2)+3x+2)

The domain of definition of the function f(x)=sqrt(1+log_(0)(1-x)) is :

The domain of definition of f(x)=log_(100x)((2 log_(10)x+1)/(-x)) , is

The domain of definition of f(x) = sqrt(1-|x|)/(2-|x|) is

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Chapter Test
  1. Find the domain of log10 (1-log10(x^2-5x+16))

    Text Solution

    |

  2. The domain of definition of f(x)=log(0.5){-log(2)((3x-1)/(3x+2))}, is

    Text Solution

    |

  3. The domain of definition of f(x)=sqrt((log(0.3)|x-2|)/(|x|)), is

    Text Solution

    |

  4. The domain of the function y=sqrt(log10(log10x)-log10(4-log10x)-log10 ...

    Text Solution

    |

  5. The function f(x)=log(2x-5)(x^(2)-3x-10) is defined for all belonging ...

    Text Solution

    |

  6. The domain of definition of f(x)=log(1.7)((2-phi'(x))/(x+1))^(1//2), w...

    Text Solution

    |

  7. The domain of definition of f(x)=log(100x)((2 log(10)x+1)/(-x)), is

    Text Solution

    |

  8. The value of x for which y=log(2){-log(1//2)(1+(1)/(x^(1//4)))-1} is a...

    Text Solution

    |

  9. Find the domain of the function f(x)=log10((log10 x^2)-5log10 x+6)

    Text Solution

    |

  10. Domain of the function f(x) = (x+0. 5)^log(0. 5+x)((x^2+2x-3)/(4x^2-4x...

    Text Solution

    |

  11. Domain of definition of the function f(x) = 3/ (4-x^2) + log10 (x^3 - ...

    Text Solution

    |

  12. The equivalent definition of f(x)=||x|-1|, is

    Text Solution

    |

  13. If f(x)||x|-1|, then fof(x) equals

    Text Solution

    |

  14. f(x)=x^2-2|x|,g(x)=min f(t):0 le t le x ,-2 le x le 0 and max f(t): 0 ...

    Text Solution

    |

  15. Find the range of f(x)=sec(pi/4cos^2x), where -oo<x<oo

    Text Solution

    |

  16. The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2,...

    Text Solution

    |

  17. The function f(x)=((1)/(2))^(sinx), is

    Text Solution

    |

  18. If [x] and {x} represetnt the integral and fractional parts of x , res...

    Text Solution

    |

  19. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  20. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |