Home
Class 12
MATHS
Let f(x)=x+1 and phi(x)=x-2. Then the va...

Let `f(x)=x+1 and phi(x)=x-2.` Then the value of x satisfying `|f(x)+phi(x)|=|f(x)|+|phi(x)|` are :

A

`(-oo,1]`

B

`[2,oo)`

C

`(-oo,-2]`

D

`[1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) that satisfy the equation: \[ |f(x) + \phi(x)| = |f(x)| + |\phi(x)| \] where \( f(x) = x + 1 \) and \( \phi(x) = x - 2 \). ### Step 1: Substitute the functions into the equation First, we substitute \( f(x) \) and \( \phi(x) \) into the equation: \[ |f(x) + \phi(x)| = |(x + 1) + (x - 2)| = |2x - 1| \] And for the right-hand side: \[ |f(x)| + |\phi(x)| = |x + 1| + |x - 2| \] So we have: \[ |2x - 1| = |x + 1| + |x - 2| \] ### Step 2: Analyze the absolute values To solve this equation, we need to consider the critical points where the expressions inside the absolute values change signs. The critical points are: 1. \( 2x - 1 = 0 \) ⇒ \( x = \frac{1}{2} \) 2. \( x + 1 = 0 \) ⇒ \( x = -1 \) 3. \( x - 2 = 0 \) ⇒ \( x = 2 \) Thus, we will analyze the intervals determined by these points: \( (-\infty, -1) \), \( [-1, \frac{1}{2}) \), \( [\frac{1}{2}, 2) \), and \( [2, \infty) \). ### Step 3: Case 1: \( x < -1 \) In this interval, all expressions are negative: \[ |2x - 1| = -(2x - 1) = -2x + 1 \] \[ |x + 1| = -(x + 1) = -x - 1 \] \[ |x - 2| = -(x - 2) = -x + 2 \] Substituting these into the equation gives: \[ -2x + 1 = (-x - 1) + (-x + 2) \] \[ -2x + 1 = -2x + 1 \] This is true for all \( x < -1 \). ### Step 4: Case 2: \( -1 \leq x < \frac{1}{2} \) In this interval: \[ |2x - 1| = -(2x - 1) = -2x + 1 \] \[ |x + 1| = x + 1 \] \[ |x - 2| = -(x - 2) = -x + 2 \] Substituting gives: \[ -2x + 1 = (x + 1) + (-x + 2) \] \[ -2x + 1 = 3 \] \[ -2x = 2 \implies x = -1 \] This value is valid in the interval. ### Step 5: Case 3: \( \frac{1}{2} \leq x < 2 \) In this interval: \[ |2x - 1| = 2x - 1 \] \[ |x + 1| = x + 1 \] \[ |x - 2| = -(x - 2) = -x + 2 \] Substituting gives: \[ 2x - 1 = (x + 1) + (-x + 2) \] \[ 2x - 1 = 3 \] \[ 2x = 4 \implies x = 2 \] This value is not valid in the interval since \( x \) must be less than 2. ### Step 6: Case 4: \( x \geq 2 \) In this interval: \[ |2x - 1| = 2x - 1 \] \[ |x + 1| = x + 1 \] \[ |x - 2| = x - 2 \] Substituting gives: \[ 2x - 1 = (x + 1) + (x - 2) \] \[ 2x - 1 = 2x - 1 \] This is true for all \( x \geq 2 \). ### Conclusion The values of \( x \) satisfying the original equation are: \[ x \in (-\infty, -1] \cup [2, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|95 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)-x and phi (x)= sin 2x , then

let f(x)=x^(2)-3x+4 the values of x which satisfies f(1)+f(x)=f(1)*f(x) is

Let f(x)=x amd g(x)=|x| for all x in R . Then the function phi(x)"satisfying"{phi(x)-f(x)}^(2)+{phi(x)-g(x)}^(2) =0 is

If phi(x)=phi'(x) and phi(1)=2, then phi(3) equals

if phi(x)=cos x-int_(0)^(x)(x-t)phi(t)dt. Then find the value of phi^(prime,)(x)+phi(x)

Let f(x)=2^(2x-1) and phi(x)=-2^(x)+2x log2 If f'(x)>phi(x), then

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Chapter Test
  1. If [x] and {x} represetnt the integral and fractional parts of x , res...

    Text Solution

    |

  2. Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):}. T...

    Text Solution

    |

  3. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  4. The domain of definition of the function f(x)=tan((pi)/([x+2])), is

    Text Solution

    |

  5. The range of the function f(x)=sin{log(10)((sqrt(4-x^(2)))/(1-x))} ,is

    Text Solution

    |

  6. The range of the function y=(x+2)/(x^2-8x+4)

    Text Solution

    |

  7. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  8. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  9. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  10. Which of the following functions has period pi ?

    Text Solution

    |

  11. The function f(x)=x[x] , is

    Text Solution

    |

  12. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  13. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  14. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  15. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  16. Let the function f(x)=3x^(2)-4x+5log(1+|x|) be defined on the interval...

    Text Solution

    |

  17. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  18. Which one of the following is not periodic ?

    Text Solution

    |

  19. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|x|-2)), is

    Text Solution

    |

  20. The domain of f(x)=log|log(e)x| , is

    Text Solution

    |