Home
Class 12
MATHS
The range of the function f(x)=sin{log(1...

The range of the function `f(x)=sin{log_(10)((sqrt(4-x^(2)))/(1-x))}` ,is

A

[0,1]

B

(-1,0)

C

[-1,1]

D

(-1,1)

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin\left(\log_{10}\left(\frac{\sqrt{4 - x^2}}{1 - x}\right)\right) \), we will follow these steps: ### Step 1: Determine the Domain of the Function 1. **Identify Restrictions from the Square Root**: The expression inside the square root, \( 4 - x^2 \), must be non-negative: \[ 4 - x^2 \geq 0 \implies x^2 \leq 4 \implies -2 \leq x \leq 2 \] 2. **Identify Restrictions from the Logarithm**: The argument of the logarithm, \( \frac{\sqrt{4 - x^2}}{1 - x} \), must be positive: \[ \frac{\sqrt{4 - x^2}}{1 - x} > 0 \] This requires: - \( \sqrt{4 - x^2} > 0 \) (which is true for \( -2 < x < 2 \)) - \( 1 - x > 0 \implies x < 1 \) 3. **Combine the Restrictions**: The domain of \( f(x) \) is the intersection of the intervals: \[ -2 < x < 2 \quad \text{and} \quad x < 1 \implies -2 < x < 1 \] ### Step 2: Analyze the Expression Inside the Logarithm We need to analyze the behavior of \( \frac{\sqrt{4 - x^2}}{1 - x} \) over the interval \( -2 < x < 1 \). 1. **Evaluate at the Endpoints**: - As \( x \to -2 \): \[ \frac{\sqrt{4 - (-2)^2}}{1 - (-2)} = \frac{\sqrt{0}}{3} = 0 \] - As \( x \to 1 \): \[ \frac{\sqrt{4 - 1^2}}{1 - 1} \to \text{undefined (approaches } +\infty\text{)} \] 2. **Evaluate at a Point in the Interval**: - At \( x = 0 \): \[ \frac{\sqrt{4 - 0^2}}{1 - 0} = \frac{2}{1} = 2 \] ### Step 3: Determine the Range of the Logarithm The logarithm function \( \log_{10}(y) \) is defined for \( y > 0 \) and ranges from \( -\infty \) to \( +\infty \) as \( y \) moves from \( 0 \) to \( +\infty \). 1. **Behavior of the Logarithm**: - As \( x \to -2 \), \( \frac{\sqrt{4 - x^2}}{1 - x} \to 0 \) implies \( \log_{10}(0) \to -\infty \). - As \( x \to 1 \), \( \frac{\sqrt{4 - x^2}}{1 - x} \to +\infty \) implies \( \log_{10}(+\infty) \to +\infty \). ### Step 4: Determine the Range of the Sine Function The sine function, \( \sin(t) \), where \( t \) ranges from \( -\infty \) to \( +\infty \), oscillates between -1 and 1. ### Conclusion Thus, the range of \( f(x) = \sin\left(\log_{10}\left(\frac{\sqrt{4 - x^2}}{1 - x}\right)\right) \) is: \[ \text{Range of } f(x) = [-1, 1] \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|95 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

Domain of the function f(x)=sin(ln((sqrt(4-x^(2)))/(1-x))) is

The range of the function f(x)=log_((1)/(2))log_(5)(sqrt(2x^(2)+4x+7)) is

The range of the function f(x)=sin^(-1)(log_(2)(-x^(2)+2x+3)) is

Range of the function f(x)=log_(2)((4)/(sqrt(x+2)+sqrt(2-x)))is

The range of the function f(x)=log_(3)((x^(2)-5x+6)/(x^(2)-5x+4)) is

The function f(x)= cos{log_(10)(x+sqrt(x^(2)+1)} , is

Find the range of the function f(x) =sin^(-1)sqrt(1+x^4)/(1+5x^10)

OBJECTIVE RD SHARMA-REAL FUNCTIONS -Chapter Test
  1. Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(...

    Text Solution

    |

  2. The domain of definition of the function f(x)=tan((pi)/([x+2])), is

    Text Solution

    |

  3. The range of the function f(x)=sin{log(10)((sqrt(4-x^(2)))/(1-x))} ,is

    Text Solution

    |

  4. The range of the function y=(x+2)/(x^2-8x+4)

    Text Solution

    |

  5. The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in ...

    Text Solution

    |

  6. The period of the function f(x)=|sin 3x|+| cos 3x| , is

    Text Solution

    |

  7. The function f(x)={{:( 1, x in Q),(0, x notin Q):}, is

    Text Solution

    |

  8. Which of the following functions has period pi ?

    Text Solution

    |

  9. The function f(x)=x[x] , is

    Text Solution

    |

  10. If f(x) and g(x) are periodic functions with the same fundamental per...

    Text Solution

    |

  11. The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi], where ...

    Text Solution

    |

  12. If f(sinx)-f(-sinx)=x^(2)-1 is defined for all x in R , then the val...

    Text Solution

    |

  13. Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2...

    Text Solution

    |

  14. Let the function f(x)=3x^(2)-4x+5log(1+|x|) be defined on the interval...

    Text Solution

    |

  15. If f:[-4,0]->R is defined by f(x) = e^x + sin x, its even extension to...

    Text Solution

    |

  16. Which one of the following is not periodic ?

    Text Solution

    |

  17. The domain of the function f(x)=(sin^(-1)(3-x))/(log(e)(|x|-2)), is

    Text Solution

    |

  18. The domain of f(x)=log|log(e)x| , is

    Text Solution

    |

  19. The period of sin^(2) theta , is

    Text Solution

    |

  20. The domain of the function f(x)=""^(16-x)C(2x-1)+^(20-3x)P(4x-5), wher...

    Text Solution

    |