Home
Class 11
MATHS
find the square roots of the following: ...

find the square roots of the following:
(i) `7+24i`
(ii) `7-24i`
(iii) `-7-24i`
(iv) `-7+24i`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the square roots of the complex numbers given in the question, we will use the formula for the square root of a complex number \( z = a + bi \). The square root can be expressed in the form \( x + yi \), where \( x \) and \( y \) are real numbers. The following equations must hold: 1. \( x^2 - y^2 = a \) 2. \( 2xy = b \) We will solve for \( x \) and \( y \) using these equations. ### (i) Finding the square root of \( 7 + 24i \) 1. **Identify \( a \) and \( b \)**: Here, \( a = 7 \) and \( b = 24 \). 2. **Set up the equations**: - \( x^2 - y^2 = 7 \) (Equation 1) - \( 2xy = 24 \) (Equation 2) 3. **From Equation 2, solve for \( y \)**: \[ y = \frac{24}{2x} = \frac{12}{x} \] 4. **Substitute \( y \) into Equation 1**: \[ x^2 - \left(\frac{12}{x}\right)^2 = 7 \] \[ x^2 - \frac{144}{x^2} = 7 \] Multiply through by \( x^2 \): \[ x^4 - 7x^2 - 144 = 0 \] 5. **Let \( u = x^2 \)**, then we have: \[ u^2 - 7u - 144 = 0 \] 6. **Use the quadratic formula**: \[ u = \frac{7 \pm \sqrt{49 + 576}}{2} = \frac{7 \pm 25}{2} \] This gives: \[ u = 16 \quad \text{or} \quad u = -9 \] Since \( u = x^2 \), we take \( u = 16 \) (as \( u = -9 \) is not valid). 7. **Find \( x \)**: \[ x = 4 \quad \text{or} \quad x = -4 \] 8. **Find \( y \)** using \( y = \frac{12}{x} \): - If \( x = 4 \): \( y = 3 \) - If \( x = -4 \): \( y = -3 \) 9. **Final results**: \[ \sqrt{7 + 24i} = 4 + 3i \quad \text{and} \quad -4 - 3i \] ### (ii) Finding the square root of \( 7 - 24i \) 1. **Identify \( a \) and \( b \)**: Here, \( a = 7 \) and \( b = -24 \). 2. **Set up the equations**: - \( x^2 - y^2 = 7 \) (Equation 1) - \( 2xy = -24 \) (Equation 2) 3. **From Equation 2, solve for \( y \)**: \[ y = \frac{-24}{2x} = \frac{-12}{x} \] 4. **Substitute \( y \) into Equation 1**: \[ x^2 - \left(\frac{-12}{x}\right)^2 = 7 \] \[ x^2 - \frac{144}{x^2} = 7 \] Multiply through by \( x^2 \): \[ x^4 - 7x^2 - 144 = 0 \] 5. **Let \( u = x^2 \)**, then we have: \[ u^2 - 7u - 144 = 0 \] 6. **Use the quadratic formula**: \[ u = \frac{7 \pm 25}{2} \] This gives: \[ u = 16 \quad \text{or} \quad u = -9 \] Since \( u = x^2 \), we take \( u = 16 \). 7. **Find \( x \)**: \[ x = 4 \quad \text{or} \quad x = -4 \] 8. **Find \( y \)** using \( y = \frac{-12}{x} \): - If \( x = 4 \): \( y = -3 \) - If \( x = -4 \): \( y = 3 \) 9. **Final results**: \[ \sqrt{7 - 24i} = 4 - 3i \quad \text{and} \quad -4 + 3i \] ### (iii) Finding the square root of \( -7 - 24i \) 1. **Identify \( a \) and \( b \)**: Here, \( a = -7 \) and \( b = -24 \). 2. **Set up the equations**: - \( x^2 - y^2 = -7 \) (Equation 1) - \( 2xy = -24 \) (Equation 2) 3. **From Equation 2, solve for \( y \)**: \[ y = \frac{-24}{2x} = \frac{-12}{x} \] 4. **Substitute \( y \) into Equation 1**: \[ x^2 - \left(\frac{-12}{x}\right)^2 = -7 \] \[ x^2 - \frac{144}{x^2} = -7 \] Multiply through by \( x^2 \): \[ x^4 + 7x^2 - 144 = 0 \] 5. **Let \( u = x^2 \)**, then we have: \[ u^2 + 7u - 144 = 0 \] 6. **Use the quadratic formula**: \[ u = \frac{-7 \pm \sqrt{49 + 576}}{2} = \frac{-7 \pm 25}{2} \] This gives: \[ u = 9 \quad \text{or} \quad u = -16 \] Since \( u = x^2 \), we take \( u = 9 \). 7. **Find \( x \)**: \[ x = 3 \quad \text{or} \quad x = -3 \] 8. **Find \( y \)** using \( y = \frac{-12}{x} \): - If \( x = 3 \): \( y = -4 \) - If \( x = -3 \): \( y = 4 \) 9. **Final results**: \[ \sqrt{-7 - 24i} = 3 - 4i \quad \text{and} \quad -3 + 4i \] ### (iv) Finding the square root of \( -7 + 24i \) 1. **Identify \( a \) and \( b \)**: Here, \( a = -7 \) and \( b = 24 \). 2. **Set up the equations**: - \( x^2 - y^2 = -7 \) (Equation 1) - \( 2xy = 24 \) (Equation 2) 3. **From Equation 2, solve for \( y \)**: \[ y = \frac{24}{2x} = \frac{12}{x} \] 4. **Substitute \( y \) into Equation 1**: \[ x^2 - \left(\frac{12}{x}\right)^2 = -7 \] \[ x^2 - \frac{144}{x^2} = -7 \] Multiply through by \( x^2 \): \[ x^4 + 7x^2 - 144 = 0 \] 5. **Let \( u = x^2 \)**, then we have: \[ u^2 + 7u - 144 = 0 \] 6. **Use the quadratic formula**: \[ u = \frac{-7 \pm \sqrt{49 + 576}}{2} = \frac{-7 \pm 25}{2} \] This gives: \[ u = 9 \quad \text{or} \quad u = -16 \] Since \( u = x^2 \), we take \( u = 9 \). 7. **Find \( x \)**: \[ x = 3 \quad \text{or} \quad x = -3 \] 8. **Find \( y \)** using \( y = \frac{12}{x} \): - If \( x = 3 \): \( y = 4 \) - If \( x = -3 \): \( y = -4 \) 9. **Final results**: \[ \sqrt{-7 + 24i} = 3 + 4i \quad \text{and} \quad -3 - 4i \] ### Summary of Results - \( \sqrt{7 + 24i} = 4 + 3i \) and \( -4 - 3i \) - \( \sqrt{7 - 24i} = 4 - 3i \) and \( -4 + 3i \) - \( \sqrt{-7 - 24i} = 3 - 4i \) and \( -3 + 4i \) - \( \sqrt{-7 + 24i} = 3 + 4i \) and \( -3 - 4i \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (h) Long Answer Type Questions|7 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Short Answer Type Questions|4 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (g) Short Answer Type Questions|2 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the square roots of the following: 7-24i (ii) 5+12i

Find the square root of 7+24i

Find the square root of -7-24i

Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) (iii) -i (iv) 8i (v) -7+24i (vi) -24- 10i

Find the square root of the following complex number: -7-24i

The square roots of 7+24i are

Find the square roots of the following: (i) 3-4sqrt(7)i (ii) 4+6sqrt(-5) (iii) -2+2sqrt(3)i .

Find the cube of each of the following (i) (-7) (ii) 1 2/3 (iii) 2.5 (iv) 0.05