Home
Class 11
MATHS
Convert the following in polar form: (...

Convert the following in polar form:
`(1+3i)/(1-2i)`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \((1 + 3i)/(1 - 2i)\) into polar form, we will follow these steps: ### Step 1: Simplify the Complex Number We start with the expression \((1 + 3i)/(1 - 2i)\). To simplify this, we will multiply the numerator and the denominator by the conjugate of the denominator, which is \((1 + 2i)\). \[ \frac{(1 + 3i)(1 + 2i)}{(1 - 2i)(1 + 2i)} \] ### Step 2: Calculate the Denominator Now, we calculate the denominator: \[ (1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5 \] ### Step 3: Calculate the Numerator Next, we calculate the numerator: \[ (1 + 3i)(1 + 2i) = 1 \cdot 1 + 1 \cdot 2i + 3i \cdot 1 + 3i \cdot 2i = 1 + 2i + 3i + 6(-1) = 1 + 5i - 6 = -5 + 5i \] ### Step 4: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{-5 + 5i}{5} = -1 + i \] ### Step 5: Write in Standard Form Now we have the complex number in standard form: \[ -1 + i \] ### Step 6: Convert to Polar Form To convert \(-1 + i\) into polar form, we need to find the modulus \(r\) and the argument \(\theta\). #### Step 6.1: Calculate the Modulus \(r\) The modulus \(r\) is given by: \[ r = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] #### Step 6.2: Calculate the Argument \(\theta\) The argument \(\theta\) is given by: \[ \tan(\theta) = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1}{-1} = -1 \] This corresponds to an angle in the second quadrant, where \(\tan(\theta) = -1\). The angle that satisfies this is: \[ \theta = \frac{3\pi}{4} \] ### Step 7: Write the Polar Form Now we can write the polar form of the complex number: \[ \sqrt{2} \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right) \] ### Final Answer Thus, the polar form of \(\frac{(1 + 3i)}{(1 - 2i)}\) is: \[ \sqrt{2} \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Long Answer Type Questions|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (h) Long Answer Type Questions|7 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Convert the following in the polar form: (1+7i)/((2-i)^(2))

Convert the following in polar form, (iii) i(1+i)

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Convert the following in polar form, (iv) (5-i)/(2-3i)

Convert the following in polar form, (ii) ((sqrt3 -1)-(sqrt3+1)i)/((2sqrt2))

Convert the following into polar form : (i) -1+isqrt(3) (ii) 1-i (iii) 1-(1)/(i) (iv) 3-4i (v) sin120^(@)-icos120^(@) (vi) 2

Convert the following into polar forms : 1-i,-1+i,-3,sqrt(3)+i

Convert the following in polar form, (i) -3sqrt2+3sqrt2i

Express the following in the polar form: (i) 1+i (ii) -1-i (iii) 1+sqrt(3)i (iv) (-16)/(1+sqrt(3)i) .

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)