Home
Class 11
MATHS
Express the following in the polar form:...

Express the following in the polar form:
(i) `1+i`
(ii) `-1-i`
(iii) `1+sqrt(3)i`
(iv) `(-16)/(1+sqrt(3)i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To express the given complex numbers in polar form, we will follow these steps for each part: 1. **Calculate the modulus (r)** using the formula \( r = \sqrt{a^2 + b^2} \), where \( a \) is the real part and \( b \) is the imaginary part of the complex number. 2. **Determine the argument (θ)** using the formula \( \theta = \tan^{-1}(\frac{b}{a}) \). We also need to consider the quadrant in which the complex number lies to find the correct angle. 3. **Express the complex number in polar form** using the formula \( z = r(\cos \theta + i \sin \theta) \). Now, let's solve each part step by step. ### (i) For the complex number \( 1 + i \): **Step 1: Calculate the modulus (r)** \[ r = \sqrt{1^2 + 1^2} = \sqrt{2} \] **Step 2: Determine the argument (θ)** \[ \theta = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] (The angle is in the first quadrant.) **Step 3: Express in polar form** \[ z = r(\cos \theta + i \sin \theta) = \sqrt{2}\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right) \] ### (ii) For the complex number \( -1 - i \): **Step 1: Calculate the modulus (r)** \[ r = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2} \] **Step 2: Determine the argument (θ)** \[ \theta = \tan^{-1}\left(\frac{-1}{-1}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] (The angle is in the third quadrant, so we add \( \pi \)): \[ \theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4} \] **Step 3: Express in polar form** \[ z = \sqrt{2}\left(\cos\frac{5\pi}{4} + i \sin\frac{5\pi}{4}\right) \] ### (iii) For the complex number \( 1 + \sqrt{3}i \): **Step 1: Calculate the modulus (r)** \[ r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] **Step 2: Determine the argument (θ)** \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] (The angle is in the first quadrant.) **Step 3: Express in polar form** \[ z = 2\left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right) \] ### (iv) For the complex number \( \frac{-16}{1 + \sqrt{3}i} \): **Step 1: Rationalize the denominator** Multiply numerator and denominator by the conjugate: \[ \frac{-16(1 - \sqrt{3}i)}{(1 + \sqrt{3}i)(1 - \sqrt{3}i)} = \frac{-16(1 - \sqrt{3}i)}{1^2 - (\sqrt{3})^2} = \frac{-16(1 - \sqrt{3}i)}{1 - 3} = \frac{-16(1 - \sqrt{3}i)}{-2} = 8(1 - \sqrt{3}i) \] **Step 2: Calculate the modulus (r)** \[ r = \sqrt{(8)^2 + (-8\sqrt{3})^2} = \sqrt{64 + 192} = \sqrt{256} = 16 \] **Step 3: Determine the argument (θ)** \[ \theta = \tan^{-1}\left(\frac{-8\sqrt{3}}{8}\right) = \tan^{-1}(-\sqrt{3}) \] (The angle is in the fourth quadrant): \[ \theta = -\frac{\pi}{3} \] **Step 4: Express in polar form** \[ z = 16\left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right)\right) \] ### Final Answers: 1. \( z = \sqrt{2}\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right) \) 2. \( z = \sqrt{2}\left(\cos\frac{5\pi}{4} + i \sin\frac{5\pi}{4}\right) \) 3. \( z = 2\left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right) \) 4. \( z = 16\left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right)\right) \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Short Answer Type Questions|4 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Convert the following in polar form, (iii) i(1+i)

Express the following complex number in the polar form: (1+i)/(1-i)

Convert the following in polar form: (1+3i)/(1-2i)

Express the following in polar form, (i) sqrt(3)-i (ii) -4+4sqrt(3)i .

Express the following in the form a+ib (i) (5+sqrt(2i))/(1-sqrt(2i)) (ii)

Express the following in the form a +ib:1+2i+3i^(2)1-2i+3i^(2)

Express in polar form (1+i)

Put the following numbers in the polar form: -1-sqrt(3)i

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Put the following numbers in the polar form: (-16)/(1+i sqrt(3)