Home
Class 11
MATHS
If z(1),z(2)inC, show that (z(1)+z(2))^(...

If `z_(1),z_(2)inC`, show that `(z_(1)+z_(2))^(2)=z_(1)^(2)+2z_(1)z_(2)+z_(2)^(2)` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (j) Long Answer Type Questions|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Short Answer Type Questions|4 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

For all complex numbers z_(1) and z_(2) , prove that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2(|z_(1)|^(2)+|z_(2)|^(2)) .

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

If z_(-)1 and z_(-)2 are any two complex numbers show that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2|z_(1)|^(2)+2|z_(2)|^(2)

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)|^(2) + |z_(2)|^(2) Possible difference between the argument of z_(1) and z_(2) is

If z;z_(1);z_(2)varepsilon C then (vii) |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)+2Re(z_(1)bar(z)_(2))( viii) |z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2Re(z_(1)bar(z)_(2))( ix) |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2(|z_(1)|^(2)+|z_(2)|^(2))(x)|az_(1)-bz_(2)|^(2)+|bz_(1)+az_(2)|^(2)=(a^(2)+b^(2))(|z_(1)|^(2)+|z_(2)|^(2)) where a;b varepsilon R

Complex numbers z_(1),z_(2),z_(3) are the vertices of A,B,C respectively of an equilteral triangle. Show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1).

For any two complex numbers z_(1) and z_(2), prove that |z_(1)+z_(2)| =|z_(1)|-|z_(2)| and |z_(1)-z_(2)|>=|z_(1)|-|z_(2)|

For any two complex numbers z_(1) and z_(2) prove that: |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|backslash z_(2)|^(2)+2Rebar(z)_(1)z_(2)

If z_(1)=2-i,z_(2)=1+i, find |(z_(1)+z_(2)+1)/(z_(1)-z_(2)+i)|