Home
Class 11
MATHS
Solve the Equation: (i) x^(2)+x+(1)/(s...

Solve the Equation:
(i) `x^(2)+x+(1)/(sqrt(2))=0`
(ii) `x^(2)+(x)/(sqrt(2))+1=0`
(iii) `x^(2)+(x)/(2)+1=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given, we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a\), \(b\), and \(c\) are the coefficients from the quadratic equation \(ax^2 + bx + c = 0\). ### (i) Solve \(x^2 + x + \frac{1}{\sqrt{2}} = 0\) 1. Identify coefficients: - \(a = 1\) - \(b = 1\) - \(c = \frac{1}{\sqrt{2}}\) 2. Calculate the discriminant: \[ D = b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot \frac{1}{\sqrt{2}} = 1 - \frac{4}{\sqrt{2}} = 1 - 2\sqrt{2} \] 3. Since \(D < 0\), the roots will be complex. 4. Apply the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 - 2\sqrt{2}}}{2 \cdot 1} \] \[ x = \frac{-1 \pm i\sqrt{2\sqrt{2} - 1}}{2} \] ### (ii) Solve \(x^2 + \frac{x}{\sqrt{2}} + 1 = 0\) 1. Identify coefficients: - \(a = 1\) - \(b = \frac{1}{\sqrt{2}}\) - \(c = 1\) 2. Calculate the discriminant: \[ D = b^2 - 4ac = \left(\frac{1}{\sqrt{2}}\right)^2 - 4 \cdot 1 \cdot 1 = \frac{1}{2} - 4 = \frac{1 - 8}{2} = -\frac{7}{2} \] 3. Since \(D < 0\), the roots will be complex. 4. Apply the quadratic formula: \[ x = \frac{-\frac{1}{\sqrt{2}} \pm \sqrt{-\frac{7}{2}}}{2 \cdot 1} \] \[ x = \frac{-\frac{1}{\sqrt{2}} \pm i\sqrt{\frac{7}{2}}}{2} \] \[ x = \frac{-1}{2\sqrt{2}} \pm \frac{i\sqrt{7}}{2\sqrt{2}} \] ### (iii) Solve \(x^2 + \frac{x}{2} + 1 = 0\) 1. Identify coefficients: - \(a = 1\) - \(b = \frac{1}{2}\) - \(c = 1\) 2. Calculate the discriminant: \[ D = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4 \cdot 1 \cdot 1 = \frac{1}{4} - 4 = \frac{1 - 16}{4} = -\frac{15}{4} \] 3. Since \(D < 0\), the roots will be complex. 4. Apply the quadratic formula: \[ x = \frac{-\frac{1}{2} \pm \sqrt{-\frac{15}{4}}}{2 \cdot 1} \] \[ x = \frac{-\frac{1}{2} \pm i\sqrt{\frac{15}{4}}}{2} \] \[ x = \frac{-1}{4} \pm \frac{i\sqrt{15}}{4} \] ### Summary of Solutions: 1. For \(x^2 + x + \frac{1}{\sqrt{2}} = 0\): \[ x = \frac{-1 \pm i\sqrt{2\sqrt{2} - 1}}{2} \] 2. For \(x^2 + \frac{x}{\sqrt{2}} + 1 = 0\): \[ x = \frac{-1}{2\sqrt{2}} \pm \frac{i\sqrt{7}}{2\sqrt{2}} \] 3. For \(x^2 + \frac{x}{2} + 1 = 0\): \[ x = \frac{-1}{4} \pm \frac{i\sqrt{15}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS FILL IN THE BLANKS (B)|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (i) Long Answer Type Questions|8 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: x^(2)+x+(1)/(sqrt(2))=0

Solve the equation x^(2)+x+(1)/(sqrt(3))=0

Solve the equation: x^(2)+(x)/(sqrt(2))+1=0

Solve the equation: sqrt(2)x^(2)+x+sqrt(2)=0

Solve the equation x^(2)+(x)/(sqrt(2))+1=0

Solve the Equation: (i) x^(2)+3x+5=0 (ii) x^(2)-x+2=0 .

Solve the following quadratic: x^(2)+x+(1)/(sqrt(2))=0

Solve the following quadratic: x^(2)+(x)/(sqrt(2))+1=0

(x^(2)-1)sqrt(x^(2)-x-2)<=0

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0