Home
Class 11
MATHS
If (3+4i)/(2-4i)=x+iy, then x=. . . . . ...

If `(3+4i)/(2-4i)=x+iy`, then x=. . . . . And y=. . . .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((3 + 4i)/(2 - 4i) = x + iy\), we need to find the values of \(x\) and \(y\). We will do this by rationalizing the denominator. ### Step-by-step Solution: 1. **Start with the given expression**: \[ \frac{3 + 4i}{2 - 4i} \] 2. **Rationalize the denominator**: To eliminate the imaginary part in the denominator, multiply the numerator and the denominator by the conjugate of the denominator, which is \(2 + 4i\): \[ \frac{(3 + 4i)(2 + 4i)}{(2 - 4i)(2 + 4i)} \] 3. **Calculate the denominator**: Using the difference of squares formula \(a^2 - b^2\): \[ (2 - 4i)(2 + 4i) = 2^2 - (4i)^2 = 4 - 16(-1) = 4 + 16 = 20 \] 4. **Calculate the numerator**: Distributing in the numerator: \[ (3 + 4i)(2 + 4i) = 3 \cdot 2 + 3 \cdot 4i + 4i \cdot 2 + 4i \cdot 4i = 6 + 12i + 8i + 16i^2 \] Since \(i^2 = -1\), we have: \[ 16i^2 = 16(-1) = -16 \] Thus, the numerator simplifies to: \[ 6 + 20i - 16 = -10 + 20i \] 5. **Combine the results**: Now we can rewrite the expression: \[ \frac{-10 + 20i}{20} \] 6. **Separate into real and imaginary parts**: This simplifies to: \[ -\frac{10}{20} + \frac{20}{20}i = -\frac{1}{2} + i \] 7. **Identify \(x\) and \(y\)**: From the expression \(-\frac{1}{2} + i\), we can identify: \[ x = -\frac{1}{2}, \quad y = 1 \] ### Final Answer: \[ x = -\frac{1}{2}, \quad y = 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS VERY SHORT ANSWER TYPE QUESTIONS (D)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(2)=x+iy, find x+y

(x+iy)(2-3i)=4+i

" "(1+i)^(2)/(2-i)= x+ iy, "then find the value of x+y" .

If (x+3i)/(2+iy)=1-i then the value of (5x-7y)^(2) is