Home
Class 11
MATHS
The modulus of the complex number (1)/(2...

The modulus of the complex number `(1)/(2-3i)` is. . . .

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( \frac{1}{2 - 3i} \), we will follow these steps: ### Step 1: Identify the complex number Let \( z = \frac{1}{2 - 3i} \). ### Step 2: Multiply by the conjugate To simplify \( z \), we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of \( 2 - 3i \) is \( 2 + 3i \). \[ z = \frac{1 \cdot (2 + 3i)}{(2 - 3i)(2 + 3i)} \] ### Step 3: Simplify the denominator Now, calculate the denominator: \[ (2 - 3i)(2 + 3i) = 2^2 - (3i)^2 = 4 - 9(-1) = 4 + 9 = 13 \] ### Step 4: Simplify the numerator The numerator becomes: \[ 1 \cdot (2 + 3i) = 2 + 3i \] ### Step 5: Combine the results Now, we can write \( z \) as: \[ z = \frac{2 + 3i}{13} = \frac{2}{13} + \frac{3}{13}i \] ### Step 6: Identify the real and imaginary parts From \( z = \frac{2}{13} + \frac{3}{13}i \), we identify: - Real part \( a = \frac{2}{13} \) - Imaginary part \( b = \frac{3}{13} \) ### Step 7: Calculate the modulus The modulus of a complex number \( z = a + bi \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] Substituting the values of \( a \) and \( b \): \[ |z| = \sqrt{\left(\frac{2}{13}\right)^2 + \left(\frac{3}{13}\right)^2} \] ### Step 8: Calculate the squares Calculating the squares: \[ \left(\frac{2}{13}\right)^2 = \frac{4}{169} \] \[ \left(\frac{3}{13}\right)^2 = \frac{9}{169} \] ### Step 9: Add the squares Now, add the squares: \[ |z| = \sqrt{\frac{4}{169} + \frac{9}{169}} = \sqrt{\frac{13}{169}} = \sqrt{\frac{1}{13}} \] ### Step 10: Final result Thus, the modulus of the complex number \( \frac{1}{2 - 3i} \) is: \[ |z| = \frac{1}{\sqrt{13}} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS TRUE/FALSE QUESTIONS (C)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS VERY SHORT ANSWER TYPE QUESTIONS (D)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS MULTIPLE CHOICE QUESTION (A)|25 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of the complex number: (1)/(2-3i) .

Find the modulus of the complex number ((i)/(1-i))

The modulus of the complex number z =a +ib is

Modulus of complex number 3i-4 is:

What is the modulus of the complex number i^(2n+1) (-i)^(2n-1) , where n in N and i=sqrt(-1) ?

The modulus of the complex number ((2 + isqrt(5)))/(1 + 2sqrt(2i)) is :

Find the modulus of Complex numbe (2-3i)^(2)

Find the modulus of complex number -3-4i