Home
Class 11
MATHS
If z=2-3i, then show that z^(2)-4z+13=0....

If z=2-3i, then show that `z^(2)-4z+13=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( z^2 - 4z + 13 = 0 \) for \( z = 2 - 3i \), we will substitute the value of \( z \) into the expression and simplify it step by step. ### Step 1: Substitute \( z \) into the expression We start with the expression: \[ z^2 - 4z + 13 \] Substituting \( z = 2 - 3i \): \[ (2 - 3i)^2 - 4(2 - 3i) + 13 \] ### Step 2: Calculate \( z^2 \) Now we need to calculate \( (2 - 3i)^2 \): \[ (2 - 3i)^2 = 2^2 - 2 \cdot 2 \cdot 3i + (3i)^2 \] Calculating each term: - \( 2^2 = 4 \) - \( -2 \cdot 2 \cdot 3i = -12i \) - \( (3i)^2 = 9i^2 = 9(-1) = -9 \) Putting it all together: \[ (2 - 3i)^2 = 4 - 12i - 9 = -5 - 12i \] ### Step 3: Calculate \( -4z \) Next, we calculate \( -4(2 - 3i) \): \[ -4(2 - 3i) = -8 + 12i \] ### Step 4: Combine the results Now we substitute back into the expression: \[ (-5 - 12i) + (-8 + 12i) + 13 \] Combining like terms: - Real parts: \( -5 - 8 + 13 = 0 \) - Imaginary parts: \( -12i + 12i = 0 \) Thus, we have: \[ 0 + 0i = 0 \] ### Conclusion We have shown that: \[ z^2 - 4z + 13 = 0 \] This confirms that the equation holds true for \( z = 2 - 3i \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS VERY SHORT ANSWER TYPE QUESTIONS (D)|25 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise NCERT EXERCISE 5.1|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS FILL IN THE BLANKS (B)|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

If z=2-3i show that z^(2)-4z+13=0 and hence find the value of 4z^(3)-3z^(2)+169

If z=3-5i , then show that z^(3)-10z^(2)+58z-136=0

If z=3-5i , then show that z^(3)-10z^(2)+58z-136=0

If |z-2|=2|z-1| , then show that |z|^(2)=(4)/(3)Re(z) .

If z = 3-5i then show that z^3 - 10z^2 +58z-136=0

If z=1+2i , show that z^(2)-2z+5=0 . Hence find the value of z^(3) +7z^(2)-z+16 .

If z = 3-5i then show that z^3 -10z^2+58z -136=0

If z = 3 + 2i , prove that z^(2) - 6z + 13 = 0 and hence deduce that 3z^(3) - 13z^(2) + 9z + 65 = 0 .

If z=2-i sqrt(3) then z^(4)-4z^(2)+8z+35 is (A) 6(B)0(C)1 (D) 2

If z_(1)=-3i,z_(2)=3+4i and z_(3)=2-3i , verify that z_(1)(z_(2)+z_(3))=z_(1)z_(2)+z_(1)z_(3) .