Home
Class 11
MATHS
Convert the complex number z=(i-1)/(cosp...

Convert the complex number `z=(i-1)/(cospi/3+isinpi/3)`in the polar form.

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(2)("cos"(5pi)?(12)+"isin"(5pi)/(12))`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise REVISION EXERCISE|12 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise QUESTIONS FROM NCERT EXEMPLAR|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3) in polar form.

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

Convert z=(i-1)/("cos"(pi)/(3)+"isin"(pi)/(3)) in polar form.

Convert the complex number 3(cos(5(pi)/(3))-i sin((pi)/(6))) into polar form.

Convert the complex number (-16)/(1+i sqrt(3)) into polar form.

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

Represent the complex number z=1+i sqrt(3) in the polar form.

Convert the complex number (1)/((1+i)) into polar form.

Convert the complex number (1+i)/(1-i) in the polar form