Home
Class 10
MATHS
If alpha, beta are the zeros of the poly...

If `alpha, beta` are the zeros of the polynomial `f(x) = x^2 – 3x + 2`, then find `1/alpha + 1/beta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the zeros of the polynomial \( f(x) = x^2 - 3x + 2 \). ### Step-by-step Solution: 1. **Identify the Polynomial**: We have the polynomial \( f(x) = x^2 - 3x + 2 \). 2. **Set the Polynomial to Zero**: To find the zeros, we set the polynomial equal to zero: \[ x^2 - 3x + 2 = 0 \] 3. **Compare with Standard Form**: The standard form of a quadratic polynomial is \( ax^2 + bx + c = 0 \). Here, we identify: - \( a = 1 \) - \( b = -3 \) - \( c = 2 \) 4. **Calculate the Sum of Roots**: The sum of the roots \( \alpha + \beta \) can be calculated using the formula: \[ \alpha + \beta = -\frac{b}{a} = -\frac{-3}{1} = 3 \] 5. **Calculate the Product of Roots**: The product of the roots \( \alpha \beta \) can be calculated using the formula: \[ \alpha \beta = \frac{c}{a} = \frac{2}{1} = 2 \] 6. **Find \( \frac{1}{\alpha} + \frac{1}{\beta} \)**: We can express \( \frac{1}{\alpha} + \frac{1}{\beta} \) in terms of the sum and product of the roots: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{3}{2} \] ### Final Answer: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|12 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (VERY SHORT ANSWER QUESTIONS)|14 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POST-MID TEAM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the zeros of the polynomial f(x) = ax^2 + bx + C , then find 1/alpha^(2) +1/beta^(2) .

If a, ß are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/alpha + 1/beta .

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha, beta are the zeros of the polynomial x^2 + x - 6 , find the value of 1/alpha^(2) + 1/beta^(2) .

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 then find the value of ((alpha)/(beta)+(beta)/(alpha)) .