Home
Class 10
MATHS
If alpha, beta are the zeros of the pol...

If `alpha, beta` are the zeros of the polynomial `f(x) = ax^2 + bx + C`, then find `1/alpha^(2) +1/beta^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \) given that \( \alpha \) and \( \beta \) are the zeros of the polynomial \( f(x) = ax^2 + bx + c \), we can follow these steps: ### Step 1: Use the relationship of zeros From Vieta's formulas, we know: - The sum of the zeros \( \alpha + \beta = -\frac{b}{a} \) - The product of the zeros \( \alpha \beta = \frac{c}{a} \) ### Step 2: Rewrite the expression We can rewrite \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \) using the identity: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2} \] ### Step 3: Find \( \alpha^2 + \beta^2 \) To find \( \alpha^2 + \beta^2 \), we can use the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) \] \[ = \frac{b^2}{a^2} - \frac{2c}{a} \] ### Step 4: Find \( \alpha^2 \beta^2 \) Now, we need \( \alpha^2 \beta^2 \): \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{c}{a}\right)^2 = \frac{c^2}{a^2} \] ### Step 5: Substitute back into the expression Now we can substitute \( \alpha^2 + \beta^2 \) and \( \alpha^2 \beta^2 \) back into the rewritten expression: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c^2}{a^2}} \] \[ = \frac{b^2 - 2ac}{c^2} \] ### Final Result Thus, the final result is: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{c^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|12 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (VERY SHORT ANSWER QUESTIONS)|14 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POST-MID TEAM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha, beta are the zeros of the polynomial x^2 + x - 6 , find the value of 1/alpha^(2) + 1/beta^(2) .

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 then find the value of ((alpha)/(beta)+(beta)/(alpha)) .

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: alpha^(4)beta^(4)