Home
Class 10
MATHS
If sin A + sin^2 A = 1, then show that c...

If `sin A + sin^2 A = 1,` then show that `cos^2 A + cos^4 A = 1.`

Text Solution

Verified by Experts

The correct Answer is:
sin A + `sin^(2) A = 1`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-I|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-II|31 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If sin A + sin^2 A = 1 , then the value of cos^2A + cos^4 A is यदि sin A + sin^2 A = 1 , तो cos^2A + cos^4 A का मान है-

If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x

If sin A+sin^(2)A=1, then the value of cos^(2)A+cos^(4)A is 2(b)1(c)-2(d)0

If sin A + sin^2 A = 1 , then the value of the expression (cos^2A+ cos^4 A) is

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

Show that sin A = sqrt(1-cos^2 A) .

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1