Home
Class 10
MATHS
Write the acute angle theta satisfyin...

Write the acute angle `theta` satisfying `sqrt(3)sintheta=costheta` .

Text Solution

Verified by Experts

The correct Answer is:
`theta = 30^(@)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-I|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-II|31 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

Write the acute angle theta satisfying sqrt(3)sin theta=cos theta

sqrt(3)sintheta-costheta=sqrt(2)

sqrt(3)costheta+sintheta=2

Find the acute angle theta satisfying the equation 2sin^(2)theta-2sqrt2sintheta+1=0.

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is

If (1+tan^(2)theta)=(625)/(49)andtheta is acute , then what is the value of (sqrt(sintheta+costheta)) ?

If theta is an acute angle such that 4sin^(2) theta-2(sqrt3+1)sintheta+sqrt3=0,"then": theta= A) 30^(@) or 60^(@) B) 45^(@) or 90^(@) C) 0^(@) or 180^(@) D)none of these

For any acute angle theta; Prove (i) 'tan theta = sintheta/costheta (ii) cot theta =cos theta/sintheta

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .