Home
Class 10
MATHS
If tan A = cot B , prove that A + B = 90...

If tan A = cot B , prove that A + B = `90^(@)` .

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( A + B = 90^\circ \) given that \( \tan A = \cot B \), we can follow these steps: ### Step 1: Use the relationship between tangent and cotangent We know that: \[ \cot B = \frac{1}{\tan B} \] Thus, if \( \tan A = \cot B \), we can rewrite this as: \[ \tan A = \frac{1}{\tan B} \] ### Step 2: Rewrite the equation From the equation \( \tan A = \frac{1}{\tan B} \), we can rearrange it to: \[ \tan A \cdot \tan B = 1 \] ### Step 3: Use the identity for tangent We know from trigonometric identities that: \[ \tan(90^\circ - B) = \cot B \] Thus, we can replace \( \cot B \) in our original equation: \[ \tan A = \tan(90^\circ - B) \] ### Step 4: Set the angles equal Since the tangent function is periodic, we can equate the angles: \[ A = 90^\circ - B \] ### Step 5: Rearranging the equation Now, we can rearrange this equation to find \( A + B \): \[ A + B = 90^\circ \] ### Conclusion Thus, we have proven that: \[ A + B = 90^\circ \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-II|31 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise LONG ANSWER QUESTIONS|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SELF - ASSESSMENT TEST|9 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If tan A=cot B, then prove that A+B=90^(@)

if tan A=cot B then prove that A+B=90^(@)

If tan A=cot B, then A+B is equal to

If tan A-tan B=xand cot B-cot A=y prove that cot(A-B)=(1)/(x)+(1)/(y)

If tan A-tan B=x,cot B-cot A=y prove that cot(A-B)=(1)/(x)+(1)/(y)

If prove that prove that quad A+B=90^(@)

If tan A+tan B=a and cot A+cot B=b prove that: cot(A+B)=(1)/(a)-(1)/(b)

If cos A=m cos B then prove that cot((A+B)/(2))=(m+1)/(m-1)tan((B-A)/(2))

If cos A=m cos B then prove that cot((A+B)/(2))=(m+1)/(m-1)tan((B-A)/(2))