Home
Class 10
MATHS
(sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(...

`(sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(2) 20^(@) + cos^(2) 70^(@)) + [ (sin (90^(@) - theta).sin theta)/(tan theta) + (cos (90^(@) - theta).cos theta)/(cot theta) ]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will break it down into manageable parts. ### Given Expression: \[ \frac{\sin^2 20^\circ + \sin^2 70^\circ}{\cos^2 20^\circ + \cos^2 70^\circ} + \left( \frac{\sin(90^\circ - \theta) \cdot \sin \theta}{\tan \theta} + \frac{\cos(90^\circ - \theta) \cdot \cos \theta}{\cot \theta} \right) \] ### Step 1: Simplify the first part of the expression Using the complementary angle identity: \[ \sin(90^\circ - x) = \cos x \quad \text{and} \quad \cos(90^\circ - x) = \sin x \] We can rewrite \(\sin^2 70^\circ\) and \(\cos^2 70^\circ\): \[ \sin^2 70^\circ = \sin^2(90^\circ - 20^\circ) = \cos^2 20^\circ \] \[ \cos^2 70^\circ = \cos^2(90^\circ - 20^\circ) = \sin^2 20^\circ \] Thus, we can substitute these into our expression: \[ \frac{\sin^2 20^\circ + \cos^2 20^\circ}{\cos^2 20^\circ + \sin^2 20^\circ} \] ### Step 2: Apply the Pythagorean Identity Using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] We can simplify: \[ \frac{1}{1} = 1 \] ### Step 3: Simplify the second part of the expression Now, we simplify the second part: \[ \frac{\sin(90^\circ - \theta) \cdot \sin \theta}{\tan \theta} + \frac{\cos(90^\circ - \theta) \cdot \cos \theta}{\cot \theta} \] Using the complementary angle identities again: \[ \sin(90^\circ - \theta) = \cos \theta \quad \text{and} \quad \cos(90^\circ - \theta) = \sin \theta \] Substituting these in: \[ \frac{\cos \theta \cdot \sin \theta}{\tan \theta} + \frac{\sin \theta \cdot \cos \theta}{\cot \theta} \] ### Step 4: Rewrite \(\tan\) and \(\cot\) Recall that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus: \[ \frac{\cos \theta \cdot \sin \theta}{\frac{\sin \theta}{\cos \theta}} + \frac{\sin \theta \cdot \cos \theta}{\frac{\cos \theta}{\sin \theta}} \] This simplifies to: \[ \cos^2 \theta + \sin^2 \theta \] ### Step 5: Apply the Pythagorean Identity Again Using the Pythagorean identity again: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 6: Combine the results Now we combine the results from Step 2 and Step 5: \[ 1 + 1 = 2 \] ### Final Answer: Thus, the value of the entire expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise LONG ANSWER QUESTIONS|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise HOTS (HIGHER ORDER THINKING SKILLS)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise SHORT ANSWER QUESTIONS-I|13 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

Without using trigonometric tables,evaluate each of the following: (sin^(2)20^(@)+sin^(2)70^(@))/(cos^(2)20^(0)+cos^(2)70^(@))+(sin(90^(@)-theta)sin theta)/(tan theta)+(cos(90^(@)-theta)cos theta)/(cot theta)+cos(40^(0)+theta)-sin(50^(@)-theta)+(cos^(2)40^(0)+cos^(2)50^(@))/(sin^(2)40^(0)+sin^(2)50^(@))

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

(sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

(sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

If sin theta+cos theta=sqrt(2)cos(90^(@)-theta) then value of cot theta is

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

(cos theta)/(sin(90^(@)+theta))+(sin(-theta))/(sin(180^(@)+theta))-(tan(90^(@)+theta))/(cot theta)

VK GLOBAL PUBLICATION-INTRODUCTION TO TRIGONOMETRY-SHORT ANSWER QUESTIONS-II
  1. Without using trigonometric tables, evaluate each of the following: (...

    Text Solution

    |

  2. (2sin68^(@))/(cos22^(@))-(2cot15^(@))/(5tan75^(@))-(3tan45^(@).tan20^(...

    Text Solution

    |

  3. (sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(2) 20^(@) + cos^(2) 70^(@)) + ...

    Text Solution

    |

  4. Evaluate: sin 25^(@) cos 65^(@) + cos 25^(@) sin 65^(@).

    Text Solution

    |

  5. Without using tables, evaluate the following: 3 cos 68^(@) . "cosec"...

    Text Solution

    |

  6. If sin 3 theta = cso ( theta - 6^(@)) where 3 theta and theta - 6^(@) ...

    Text Solution

    |

  7. If sectheta=x+1/(4x),p rov et h a t :sectheta+tantheta=2xor ,1/(2x)

    Text Solution

    |

  8. Find an acute angle theta , when (costheta-sintheta)/(costheta+sinthet...

    Text Solution

    |

  9. The altitude A D of a A B C , in which /A obtuse and, A D=10c mdot If...

    Text Solution

    |

  10. If cos e c\ theta=(13)/(12) , find the value of (2sintheta-3\ cos\ ...

    Text Solution

    |

  11. Prove that (tan A )/(1 + sec A) - (tan A )/(1 - sec A ) = 2 cosec A.

    Text Solution

    |

  12. Prove: (cos^(3)theta+sin^(3)theta)/(cos theta+sin theta)+(cos^(3)theta...

    Text Solution

    |

  13. सिद्ध करें कि cot theta-tan theta=(2 cos^(2)theta-1)/(sin theta*cos...

    Text Solution

    |

  14. Prove that (cot^(2)theta)/(cosec theta+1)=cosec theta-1

    Text Solution

    |

  15. Evaluate the (sin 30^(@) + tan 45^(@) - "cosec" 60^(@))/(sec 30^(@)...

    Text Solution

    |

  16. Evaluate the following (i) s in"\ "60o"\ "cos"\ "30o"\ "+"\ "s in"...

    Text Solution

    |

  17. If tan(A+B)=sqrt(3) and t a n(A B)=1/(sqrt(3)); 0o<A+Blt=90o;""...

    Text Solution

    |

  18. If A, B and C are interior angles of a triangle ABC, then show that si...

    Text Solution

    |

  19. Prove that (cosec theta-cot theta)^2=(1-cos theta)/(1+cos theta)

    Text Solution

    |

  20. Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos the...

    Text Solution

    |