Home
Class 10
MATHS
Without using the trigonometric tables, ...

Without using the trigonometric tables, evaluate the following :
`(11)/(7) (sin 70^(@))/(cos 20^(@)) - (4)/(7) (cos 53^(@) "cosec" 37^(@))/(tan 15^(@) tan 35^(@) tan 55^(@) tan 75^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{11}{7} \frac{\sin 70^\circ}{\cos 20^\circ} - \frac{4}{7} \frac{\cos 53^\circ \csc 37^\circ}{\tan 15^\circ \tan 35^\circ \tan 55^\circ \tan 75^\circ} \] we can simplify it step by step using trigonometric identities. ### Step 1: Simplifying the first term We know that: \[ \sin 70^\circ = \cos 20^\circ \] This is because \(70^\circ + 20^\circ = 90^\circ\), and we can use the identity \(\sin(90^\circ - \theta) = \cos(\theta)\). Therefore, we can rewrite the first term: \[ \frac{11}{7} \frac{\sin 70^\circ}{\cos 20^\circ} = \frac{11}{7} \frac{\cos 20^\circ}{\cos 20^\circ} = \frac{11}{7} \cdot 1 = \frac{11}{7} \] ### Step 2: Simplifying the second term Next, we simplify the second term: \[ \frac{4}{7} \frac{\cos 53^\circ \csc 37^\circ}{\tan 15^\circ \tan 35^\circ \tan 55^\circ \tan 75^\circ} \] First, recall that \(\csc 37^\circ = \frac{1}{\sin 37^\circ}\) and \(\cos 53^\circ = \sin 37^\circ\) (since \(53^\circ + 37^\circ = 90^\circ\)). Thus, we can rewrite: \[ \cos 53^\circ \csc 37^\circ = \sin 37^\circ \cdot \frac{1}{\sin 37^\circ} = 1 \] So the second term simplifies to: \[ \frac{4}{7} \cdot \frac{1}{\tan 15^\circ \tan 35^\circ \tan 55^\circ \tan 75^\circ} \] ### Step 3: Simplifying the product of tangents Now, we need to simplify the product of tangents: \[ \tan 15^\circ \tan 75^\circ = 1 \quad \text{(since } 15^\circ + 75^\circ = 90^\circ\text{)} \] \[ \tan 35^\circ \tan 55^\circ = 1 \quad \text{(since } 35^\circ + 55^\circ = 90^\circ\text{)} \] Thus, we have: \[ \tan 15^\circ \tan 35^\circ \tan 55^\circ \tan 75^\circ = 1 \cdot 1 = 1 \] ### Step 4: Putting it all together Now we can substitute back into the expression: \[ \frac{4}{7} \cdot \frac{1}{1} = \frac{4}{7} \] ### Step 5: Final calculation Now we combine the simplified terms: \[ \frac{11}{7} - \frac{4}{7} = \frac{11 - 4}{7} = \frac{7}{7} = 1 \] Thus, the final value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER - 1

    VK GLOBAL PUBLICATION|Exercise SECTION - C|15 Videos
  • MODEL QUESTION PAPER - 1

    VK GLOBAL PUBLICATION|Exercise SECTION - C|15 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos
  • MODEL QUESTION PAPER - 9 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION - D|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the ((3 cos 43^(@))/(sin 47^(@)))^(2) - (cos 37^(@) "cosec" 53^(@))/(tan 5^(@) tan 25^(@) tan 45^(@) tan 65^(@) tan 85^(@))

Without using trigonometric tables,evaluate the following:- 2((cos58^(@))/(sin32^(@)))-sqrt(3)((cos38^(@)cos ecs2^(@))/(tan15^(@)tan60^(@)tan75^(@)))

Evaluate the following : (i) (sin58^(@))/(cos32^(@)) (ii) (sec42^(@))/("cosec"48^(@)) (iii) (tan37^(@))/(cot53^(@))

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Without using trigonometric table, evaluate the following: (sin ^(2) 25 ^(@) + sin ^(2) 65^(@))+sqret3 (tan 5 ^(@). Tan15^(@).tan30^(@).tan75^(@).tan85^(@))

Without using trigonometric tables,evaluate each of the following: (2)/(3)cos ec^(2)58^(@)-(2)/(3)cot58^(@)tan32^(@)-(5)/(3)tan13^(0)tan37^(0)tan45^(@)tan53^(@)tan77^(0)

Without using tables, evaluate the following: 3 cos 68^(@) . "cosec" 22^(@) - (1)/(2) tan 43^(@) .tan 47^(@) .tan 12^(@).tan 60^(@).tan 78^(@) .

The value of tan 15^(@) tan20^(@) tan 70^(@) tan75 is

(sin18^(0))/(cos72^(0))+(sin22^(0))/(cos68^(@))-(cos38^(0)cos ec52^(0))/(tan18^(@)tan35^(@)tan60^(@)tan72^(@)tan55^(@))