Home
Class 12
MATHS
If a gt 0, c gt 0, " b " = sqrt(ac) a...

If a `gt` 0, c `gt 0`, ` " b " = sqrt(ac)` and `" ac " ne 1`, ` N gt 0` , then `(log_(a) N - log_(b) N)/(log_(b) N - log_(c) N)` =

A

`(log_(a) N)/(log_(c)N)`

B

`(log N)/(log C)`

C

`(log N )/(log a ) `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\log_a N - \log_b N}{\log_b N - \log_c N} \] Given that \( b = \sqrt{ac} \) and \( ac \neq 1 \), we can use properties of logarithms to simplify the expression. ### Step 1: Rewrite the logarithms using change of base formula Using the change of base formula, we can express the logarithms in terms of a common base (let's use \( N \)): \[ \log_a N = \frac{1}{\log_N a}, \quad \log_b N = \frac{1}{\log_N b}, \quad \log_c N = \frac{1}{\log_N c} \] ### Step 2: Substitute the logarithms into the expression Substituting these into our expression gives: \[ \frac{\frac{1}{\log_N a} - \frac{1}{\log_N b}}{\frac{1}{\log_N b} - \frac{1}{\log_N c}} \] ### Step 3: Simplify the numerator and denominator The numerator simplifies as follows: \[ \frac{1}{\log_N a} - \frac{1}{\log_N b} = \frac{\log_N b - \log_N a}{\log_N a \cdot \log_N b} \] The denominator simplifies similarly: \[ \frac{1}{\log_N b} - \frac{1}{\log_N c} = \frac{\log_N c - \log_N b}{\log_N b \cdot \log_N c} \] ### Step 4: Combine the fractions Now substituting these back into our expression gives: \[ \frac{\frac{\log_N b - \log_N a}{\log_N a \cdot \log_N b}}{\frac{\log_N c - \log_N b}{\log_N b \cdot \log_N c}} \] ### Step 5: Simplify the overall expression This simplifies to: \[ \frac{(\log_N b - \log_N a) \cdot \log_N b \cdot \log_N c}{(\log_N c - \log_N b) \cdot \log_N a \cdot \log_N b} \] Cancelling \( \log_N b \) from the numerator and denominator (since \( \log_N b \neq 0 \)) gives: \[ \frac{\log_N b - \log_N a}{\log_N c - \log_N b} \] ### Step 6: Recognize the logarithmic identity This can be rewritten using the property of logarithms: \[ \frac{\log_N \frac{b}{a}}{\log_N \frac{c}{b}} \] ### Step 7: Final expression Thus, we find that: \[ \frac{\log_a N - \log_b N}{\log_b N - \log_c N} = \log_{\frac{c}{b}} \frac{b}{a} \] ### Conclusion The final result is: \[ \frac{\log_a N - \log_b N}{\log_b N - \log_c N} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If a, ,b c, are in G.P., then log_(a) n, log_(b) n, log_(c) n are in

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

If log_(a)x = m and log_(b)x =n then log_(a/b) x= ______

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

When a gt 1 and m gt n , then which is greater , log_(a)m (or) log_(a)n ?

if a gt and m gt n then which is greater , log_(a)m (or) log_(a)n ?