Home
Class 12
MATHS
(1)/(log(2) e) + (1)/(log(2)e^(2)) + (1)...

`(1)/(log_(2) e) + (1)/(log_(2)e^(2)) + (1)/(log_(2) e^(4)) ` + .... =

A

`2 log_(e) ` 2

B

`log_(e)` 3

C

`log_(e)`2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\log_2 e} + \frac{1}{\log_2 e^2} + \frac{1}{\log_2 e^4} + \ldots \] we can follow these steps: ### Step 1: Rewrite the logarithms Using the property of logarithms that states \(\log_b a^m = m \cdot \log_b a\), we can rewrite each term in the series: \[ \frac{1}{\log_2 e^n} = \frac{1}{n \cdot \log_2 e} \] Thus, the series can be rewritten as: \[ \frac{1}{\log_2 e} \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \ldots \right) \] ### Step 2: Identify the series The series inside the parentheses is: \[ 1 + \frac{1}{2} + \frac{1}{4} + \ldots \] This is a geometric series where the first term \(a = 1\) and the common ratio \(r = \frac{1}{2}\). ### Step 3: Sum the geometric series The sum \(S\) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \] ### Step 4: Substitute back into the expression Now, substituting back into our expression, we have: \[ \frac{1}{\log_2 e} \cdot 2 = \frac{2}{\log_2 e} \] ### Step 5: Use the change of base formula Using the change of base formula for logarithms, we know: \[ \log_2 e = \frac{1}{\log_e 2} \] Thus, we can rewrite: \[ \frac{2}{\log_2 e} = 2 \cdot \log_e 2 \] ### Final Answer So, the final value of the original expression is: \[ 2 \cdot \log_e 2 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

(1) / (log_ (3) e) + (1) / (log_ (3) e ^ (2)) + (1) / (log_ (3) e ^ (4)) + ... =

int_(1)^(2) (log_(e) x)/(x^(2)) dx

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

1+((log_(e)n)^(2))/(2!)+((log_(e)n)^(4))/(4!)+...=

Suppose 1 lt a lt sqrt(e) and log_(e)a^(2)+(log_(e)a^(2))^(2)+(log_(e)a^(2))^(3)+…. =3 [log_(e)a+(log_(e)a)^(2)+(log_(e)a)^(3)+…]" (1)" then log_(e)(a^(3))=

If quad y=tan^(-1){(log_(e)((e)/(x^(2))))/(log_(e)(ex^(2)))}+tan^(-1)((3+2log_(e)x)/(1-6log_(e)x)), then (d^(2)y)/(dx^(2))=