Home
Class 12
MATHS
If (a(b + c - a))/(log a) = (b (c + a - ...

If `(a(b + c - a))/(log a) = (b (c + a - b))/(log b) = (c (a + b - c))/(log c ) ` then `(a^(b).b^(a))/(c^(a).a^(c))` equals

A

`(1)/(2) `

B

`- 1`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a(b + c - a)}{\log a} = \frac{b(c + a - b)}{\log b} = \frac{c(a + b - c)}{\log c} \] we will denote the common value of these expressions as \( k \). ### Step 1: Set up the equations From the given equation, we can write: 1. \(\log a = \frac{a(b + c - a)}{k}\) 2. \(\log b = \frac{b(c + a - b)}{k}\) 3. \(\log c = \frac{c(a + b - c)}{k}\) ### Step 2: Express \( \log a^b \) and \( \log b^a \) We can multiply the first equation by \( b \): \[ b \log a = \frac{ab(b + c - a)}{k} \] Using the property of logarithms, we can express this as: \[ \log a^b = \frac{ab(b + c - a)}{k} \] Similarly, for \( \log b^a \): \[ a \log b = \frac{ab(c + a - b)}{k} \] Thus, \[ \log b^a = \frac{ab(c + a - b)}{k} \] ### Step 3: Add the two logarithmic equations Now, adding the two logarithmic equations: \[ \log a^b + \log b^a = \frac{ab(b + c - a)}{k} + \frac{ab(c + a - b)}{k} \] Factoring out \( \frac{ab}{k} \): \[ \log (a^b \cdot b^a) = \frac{ab}{k} \left( (b + c - a) + (c + a - b) \right) \] Simplifying the right side: \[ = \frac{ab}{k} \cdot (2c) \] ### Step 4: Express \( \log c^a \) and \( \log a^c \) Now, we will do the same for \( c \): \[ a \log c = \frac{ac(a + b - c)}{k} \] \[ \log c^a = \frac{ac(a + b - c)}{k} \] And for \( a \): \[ c \log a = \frac{c(b + c - a)}{k} \] \[ \log a^c = \frac{c(b + c - a)}{k} \] ### Step 5: Add the two logarithmic equations for \( c \) Adding these: \[ \log (c^a \cdot a^c) = \frac{ac(a + b - c)}{k} + \frac{c(b + c - a)}{k} \] Factoring out \( \frac{ac}{k} \): \[ = \frac{ac}{k} \left( (a + b - c) + (b + c - a) \right) \] Simplifying gives: \[ = \frac{ac}{k} \cdot (2b) \] ### Step 6: Equate the two results Now we have: \[ \log (a^b \cdot b^a) = \frac{2abc}{k} \] \[ \log (c^a \cdot a^c) = \frac{2abc}{k} \] Since both expressions are equal, we can write: \[ \log (a^b \cdot b^a) = \log (c^a \cdot a^c) \] ### Step 7: Exponentiate both sides Exponentiating both sides gives: \[ a^b \cdot b^a = c^a \cdot a^c \] ### Step 8: Rearranging the equation Rearranging gives: \[ \frac{a^b \cdot b^a}{c^a \cdot a^c} = 1 \] Thus, the final result is: \[ \frac{a^b \cdot b^a}{c^a \cdot a^c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers other than unity such that (a(b+c-a))/(log a)=(b(c+a-b))/(log b)=(c(a+b-c))/(log c), prove that a^(b)*b^(a)=b^(c)*c^(b)=c^(a)*a^(c)

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then a^(a)*b^(b)*c^(c)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

if c(a-b)=a(b-c) then (log(a+c)+log(a-2b+c))/(log(a+c)) is equal to

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)