Home
Class 12
MATHS
If log(e) (x^(4) y) = a and log(e) (x^(...

If `log_(e) (x^(4) y)` = a and `log_(e) (x^(2) y^(2)) = b,` then `log_(e) sqrt(y)` in terms of a and b is

A

`(2 b + a)/(2 )`

B

`( 2 b - a)/(7)`

C

`(2 b - a)/(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express \( \log_e \sqrt{y} \) in terms of \( a \) and \( b \). We start with the given equations: 1. \( \log_e (x^4 y) = a \) 2. \( \log_e (x^2 y^2) = b \) ### Step 1: Rewrite the logarithmic equations From the first equation: \[ \log_e (x^4 y) = \log_e (x^4) + \log_e (y) = 4 \log_e (x) + \log_e (y) = a \] From the second equation: \[ \log_e (x^2 y^2) = \log_e (x^2) + \log_e (y^2) = 2 \log_e (x) + 2 \log_e (y) = b \] ### Step 2: Express \( \log_e (y) \) in terms of \( \log_e (x) \) From the second equation, we can express \( \log_e (y) \) in terms of \( \log_e (x) \): \[ 2 \log_e (x) + 2 \log_e (y) = b \implies \log_e (x) + \log_e (y) = \frac{b}{2} \] Thus, \[ \log_e (y) = \frac{b}{2} - \log_e (x) \] ### Step 3: Substitute \( \log_e (y) \) into the first equation Substituting \( \log_e (y) \) into the first equation: \[ 4 \log_e (x) + \left( \frac{b}{2} - \log_e (x) \right) = a \] This simplifies to: \[ 4 \log_e (x) - \log_e (x) + \frac{b}{2} = a \] \[ 3 \log_e (x) + \frac{b}{2} = a \] ### Step 4: Solve for \( \log_e (x) \) Rearranging gives: \[ 3 \log_e (x) = a - \frac{b}{2} \] \[ \log_e (x) = \frac{a - \frac{b}{2}}{3} \] ### Step 5: Substitute back to find \( \log_e (y) \) Now substitute \( \log_e (x) \) back into the expression for \( \log_e (y) \): \[ \log_e (y) = \frac{b}{2} - \frac{a - \frac{b}{2}}{3} \] To simplify this, we find a common denominator: \[ \log_e (y) = \frac{3b}{6} - \frac{2(a - \frac{b}{2})}{6} \] \[ = \frac{3b - 2a + b}{6} = \frac{4b - 2a}{6} = \frac{2b - a}{3} \] ### Step 6: Find \( \log_e \sqrt{y} \) Using the property of logarithms: \[ \log_e \sqrt{y} = \log_e (y^{1/2}) = \frac{1}{2} \log_e (y) \] Substituting our expression for \( \log_e (y) \): \[ \log_e \sqrt{y} = \frac{1}{2} \cdot \frac{2b - a}{3} = \frac{2b - a}{6} \] Thus, the final answer is: \[ \log_e \sqrt{y} = \frac{2b - a}{6} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

y=(log_(e)x)^(sinx)

If y=log_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=

If x log_(e) (log _(e) x) - x^(2) + y^(2) = 4 (y gt 0) , then (dy)/(dx) at x = e is equal to

Draw the graph of y=(log_(e)x)^(2)

If y=log_(e)((x^(2))/(e^(2))) ,then (d^(2)y)/(dx^(2)) equals

Let y = y (x) be the solution of the differential equation dy = e^(alpha . x + y) dx , alpha in N . If y ( log_(e) 2) = log _(e) 2 and y(0) = log _(e) ((1)/(2)) , then the value of alpha is equal to _____

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

y = (tan x) / (x) log_ (e) ((e ^ (x)) / (x ^ (x)))

If x=tanh^(-1)(y) then log_(e)((1+y)/(1-y))