Home
Class 12
MATHS
If 3 log(10) (x^(2) y) = 4 + 2 log(10) x...

If 3 `log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y`, where x and y are both + ve, and x - y = `2 sqrt(6)`, then the value of x is

A

`4 + sqrt(6)`

B

`4 - sqrt(6)`

C

`sqrt(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 \log_{10} (x^2 y) = 4 + 2 \log_{10} x - \log_{10} y \) with the conditions that \( x \) and \( y \) are both positive and \( x - y = 2 \sqrt{6} \), we will follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Equation**: Start with the given equation: \[ 3 \log_{10} (x^2 y) = 4 + 2 \log_{10} x - \log_{10} y \] 2. **Use Logarithmic Properties**: Apply the properties of logarithms: \[ 3 \log_{10} (x^2 y) = 3 (\log_{10} x^2 + \log_{10} y) = 3 (2 \log_{10} x + \log_{10} y) = 6 \log_{10} x + 3 \log_{10} y \] Therefore, we can rewrite the left side: \[ 6 \log_{10} x + 3 \log_{10} y = 4 + 2 \log_{10} x - \log_{10} y \] 3. **Rearranging the Equation**: Move all terms to one side: \[ 6 \log_{10} x + 3 \log_{10} y - 2 \log_{10} x + \log_{10} y - 4 = 0 \] Combine like terms: \[ (6 - 2) \log_{10} x + (3 + 1) \log_{10} y - 4 = 0 \] This simplifies to: \[ 4 \log_{10} x + 4 \log_{10} y - 4 = 0 \] 4. **Factor Out the Common Term**: Factor out 4: \[ 4 (\log_{10} x + \log_{10} y - 1) = 0 \] Thus, we have: \[ \log_{10} x + \log_{10} y = 1 \] 5. **Convert to Exponential Form**: This implies: \[ \log_{10} (xy) = 1 \implies xy = 10 \] 6. **Use the Given Condition**: We also have the condition \( x - y = 2 \sqrt{6} \). 7. **Express y in terms of x**: From \( xy = 10 \), we can express \( y \): \[ y = \frac{10}{x} \] 8. **Substitute into the Condition**: Substitute \( y \) into the condition \( x - y = 2 \sqrt{6} \): \[ x - \frac{10}{x} = 2 \sqrt{6} \] 9. **Multiply through by x**: Multiply through by \( x \) to eliminate the fraction: \[ x^2 - 10 = 2 \sqrt{6} x \] 10. **Rearrange into Standard Form**: Rearranging gives: \[ x^2 - 2 \sqrt{6} x - 10 = 0 \] 11. **Use the Quadratic Formula**: Apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -2\sqrt{6}, c = -10 \): \[ x = \frac{2\sqrt{6} \pm \sqrt{(-2\sqrt{6})^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1} \] \[ = \frac{2\sqrt{6} \pm \sqrt{24 + 40}}{2} \] \[ = \frac{2\sqrt{6} \pm \sqrt{64}}{2} \] \[ = \frac{2\sqrt{6} \pm 8}{2} \] \[ = \sqrt{6} \pm 4 \] 12. **Determine the Positive Solution**: Since \( x \) must be positive: \[ x = \sqrt{6} + 4 \] The negative solution \( \sqrt{6} - 4 \) is not valid since \( \sqrt{6} \approx 2.45 \). ### Final Answer: Thus, the value of \( x \) is: \[ \boxed{\sqrt{6} + 4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If y = log_(10) x , then the value of (dy)/(dx) is

If log_(3)x+log_(3)y=2+log_(3)2 and log_(3)(x+y)=2 then value of x and y are

If log_(10)2 = x and log_(10)3 = y , then find log_(10)21.6.

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

If log_(10)x+log_(10)y=2, x-y=15 then :