Home
Class 12
MATHS
If log(10 ) x - log(10) sqrt(x) = (2)/(l...

If `log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x))`. The value of x is

A

`10^(-3 )`

B

`10^(-2)`

C

`(1)/(10)`

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{10} x - \log_{10} \sqrt{x} = \frac{2}{\log_{10} x} \), we will follow these steps: ### Step 1: Simplify the left side of the equation We know that \( \sqrt{x} = x^{1/2} \). Therefore, we can rewrite the logarithm: \[ \log_{10} \sqrt{x} = \log_{10} (x^{1/2}) = \frac{1}{2} \log_{10} x \] Now substitute this back into the equation: \[ \log_{10} x - \frac{1}{2} \log_{10} x = \frac{2}{\log_{10} x} \] ### Step 2: Combine the logarithms Now, combine the logarithms on the left side: \[ \frac{1}{2} \log_{10} x = \frac{2}{\log_{10} x} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ \left(\frac{1}{2} \log_{10} x\right) \cdot \log_{10} x = 2 \] This simplifies to: \[ \frac{1}{2} (\log_{10} x)^2 = 2 \] ### Step 4: Multiply both sides by 2 To eliminate the fraction, multiply both sides by 2: \[ (\log_{10} x)^2 = 4 \] ### Step 5: Take the square root of both sides Taking the square root gives us two cases: \[ \log_{10} x = 2 \quad \text{or} \quad \log_{10} x = -2 \] ### Step 6: Solve for x in both cases 1. For \( \log_{10} x = 2 \): \[ x = 10^2 = 100 \] 2. For \( \log_{10} x = -2 \): \[ x = 10^{-2} = \frac{1}{100} = 0.01 \] ### Final Answer The values of \( x \) are \( 100 \) and \( 0.01 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

If log_(10)x-log_(10)sqrt(x)=2log_(x)10 , then a possible value of x is given by

If log_(10)x-log_(10)sqrt(x)=2log_(x)10, then possible value of x is given by

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_10x-log_10sqrtx=2/(log10x), find the value of x.

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If log_(10)x^(2) -log_(10)sqrt(y) =1 , find the value of y, when x=2