Home
Class 12
MATHS
If log(12) m = a and log(18) m = b , t...

If `log_(12) ` m = a and `log_(18)` m = b , then `(a- 2b)/(b - 2a)` is

A

`log_(2)3`

B

1

C

`log_(3)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \log_{12} m = a \) 2. \( \log_{18} m = b \) We need to find the value of \( \frac{a - 2b}{b - 2a} \). ### Step 1: Express \( a \) and \( b \) in terms of natural logarithms Using the change of base formula for logarithms, we can express \( a \) and \( b \) as follows: \[ a = \frac{\log m}{\log 12} \] \[ b = \frac{\log m}{\log 18} \] ### Step 2: Substitute \( a \) and \( b \) into the expression Now, we substitute \( a \) and \( b \) into the expression \( \frac{a - 2b}{b - 2a} \): \[ \frac{a - 2b}{b - 2a} = \frac{\frac{\log m}{\log 12} - 2 \cdot \frac{\log m}{\log 18}}{\frac{\log m}{\log 18} - 2 \cdot \frac{\log m}{\log 12}} \] ### Step 3: Factor out \( \log m \) Since \( \log m \) is common in both the numerator and the denominator, we can factor it out: \[ = \frac{\log m \left( \frac{1}{\log 12} - 2 \cdot \frac{1}{\log 18} \right)}{\log m \left( \frac{1}{\log 18} - 2 \cdot \frac{1}{\log 12} \right)} \] Canceling \( \log m \) (assuming \( m > 0 \) and \( m \neq 1 \)) gives us: \[ = \frac{\frac{1}{\log 12} - \frac{2}{\log 18}}{\frac{1}{\log 18} - \frac{2}{\log 12}} \] ### Step 4: Simplifying the expression Now we can simplify the numerator and denominator: Numerator: \[ = \frac{\log 18 - 2 \log 12}{\log 12 \cdot \log 18} \] Denominator: \[ = \frac{\log 12 - 2 \log 18}{\log 12 \cdot \log 18} \] Thus, we can rewrite the expression as: \[ = \frac{\log 18 - 2 \log 12}{\log 12 - 2 \log 18} \] ### Step 5: Further simplification Now we can express \( \log 18 \) and \( \log 12 \) in terms of their prime factors: \[ \log 18 = \log(2 \cdot 3^2) = \log 2 + 2 \log 3 \] \[ \log 12 = \log(2^2 \cdot 3) = 2 \log 2 + \log 3 \] Substituting these into the expression gives: Numerator: \[ = \log 2 + 2 \log 3 - 2(2 \log 2 + \log 3) = \log 2 + 2 \log 3 - 4 \log 2 - 2 \log 3 = -3 \log 2 \] Denominator: \[ = 2 \log 2 + \log 3 - 2(\log 2 + 2 \log 3) = 2 \log 2 + \log 3 - 2 \log 2 - 4 \log 3 = -3 \log 3 \] ### Step 6: Final expression Now we have: \[ = \frac{-3 \log 2}{-3 \log 3} = \frac{\log 2}{\log 3} \] ### Final Answer Thus, the value of \( \frac{a - 2b}{b - 2a} \) is: \[ \frac{\log 2}{\log 3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_(a)x = m and log_(b)x =n then log_(a/b) x= ______

If log_(b)n=2 and log_(n)(2b)=2 , then nb=

If log_(2)7= a and log_(3)2=b ," then the value of log_(14)84 is : (A) (1+3b+2ab)/(ab-b) (B) (1+2b+ab)/(b+ab) (C) (1+a+b)/(a+b) (D) (1+b+ab)/(a+ab)

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If log_(4)5=a and log_(5)6=b, then log_(3)2 is equal to (1)/(2a+1) (b) (1)/(2b+1)(c)2ab+1(d)(1)/(2ab-1)

if a=log_(12)m;b=log_(18)m, prove that (a-2b)/(b-2a)=log_(3)2

If log_(b)(n)=2 and log_(n)(2b)=2, then b is equal to