Home
Class 12
MATHS
If y = a^((1)/( 1 - log(a)x)) , z = a^((...

If y = `a^((1)/( 1 - log_(a)x)) , z = a^((1)/(1 - log_(a)y))`, then x will be

A

`a^((1)/(1 - log_(a)z))`

B

`log_(a^(z))`

C

`a^((1)/(1+ log_(a)z))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( y = a^{\frac{1}{1 - \log_a x}} \) 2. \( z = a^{\frac{1}{1 - \log_a y}} \) We need to find the value of \( x \). ### Step 1: Take the logarithm of both sides of the first equation Taking logarithm base \( a \) on both sides of the first equation: \[ \log_a y = \frac{1}{1 - \log_a x} \] ### Step 2: Rearranging the first equation From the equation \( \log_a y = \frac{1}{1 - \log_a x} \), we can express it as: \[ 1 - \log_a x = \frac{1}{\log_a y} \] ### Step 3: Rearranging to isolate \( \log_a x \) Rearranging gives us: \[ \log_a x = 1 - \frac{1}{\log_a y} \] ### Step 4: Take the logarithm of both sides of the second equation Now, we take the logarithm of both sides of the second equation: \[ \log_a z = \frac{1}{1 - \log_a y} \] ### Step 5: Rearranging the second equation From the equation \( \log_a z = \frac{1}{1 - \log_a y} \), we can express it as: \[ 1 - \log_a y = \frac{1}{\log_a z} \] ### Step 6: Rearranging to isolate \( \log_a y \) Rearranging gives us: \[ \log_a y = 1 - \frac{1}{\log_a z} \] ### Step 7: Substitute \( \log_a y \) into the equation for \( \log_a x \) Now we substitute the expression for \( \log_a y \) into the equation for \( \log_a x \): \[ \log_a x = 1 - \frac{1}{1 - \frac{1}{\log_a z}} \] ### Step 8: Simplifying the expression for \( \log_a x \) To simplify \( \log_a x \): \[ \log_a x = 1 - \frac{\log_a z}{\log_a z - 1} \] ### Step 9: Finding \( x \) Now, we can express \( x \) in terms of \( a \): \[ x = a^{\log_a x} = a^{1 - \frac{\log_a z}{\log_a z - 1}} \] ### Step 10: Final expression for \( x \) After simplifying, we find: \[ x = \frac{a}{a^{\frac{\log_a z}{\log_a z - 1}}} \] This gives us the final value of \( x \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y=a^ ((1)/(1-log_a x), z=a^((1)/(1-log_ay) and x=a^k, then k

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If y=a^(1/(1-log_ax)), z=a^(1/(1-log_ay)) then prove that x=a^(1/(1-log_az))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)),then prove that x=a^(1/(1-(log)_a z))

If x = 1 + log_(a) bc, y = 1 + log_(b) ca, z = 1 + log_(c) ab, then xy + yz + zx =

Given y=(1)/(10^(1-log_(10)x)),z=(1)/(10^(1-log_(10)y)), if x=(1)/(10^(a+b log_(10)z)) then (b-a) equals