Home
Class 12
MATHS
16."4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^...

16.`"4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).`

A

0

B

`(1)/(2)`

C

1

D

`(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

Solve for x:4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)

Solve for x: 4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1) .

Solve for x:4^(x)-3^(x-1/2)=3^(x+1/2)-2^(2x-1)

If 4^(x)+2^(2x-1)=3^(x+(1)/(2))+3^(x-(1)/(2)), then x=..

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

The value of lim_(x rarr oo)(2x^((1)/(2))+3x^((1)/(3))+4x^((1)/(4))+......+nx^((1)/(n)))/((2x-3)^((1)/(2))+(2x-3)^((1)/(3))+......+(2x-3)^((1)/(n))) is equal to

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

Prove that: ((1)/(4))^(-2)-3x8^((2)/(3))x4^(0)+((9)/(16))^(-(1)/(2))=(16)/(3)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

lim_(x rarr a){[(a^((1)/(2))+x^((1)/(2)))/(a^((1)/(4))-x^((1)/(4))))^(-1)-(2(ax)^((1)/(4)))/(x^((3)/(4))-a^((1)/(4))x^((1)/(2))+a^((1)/(2))x^((1)/(4))-a^((3)/(4)))]^(-1)-sqrt(2)^(log_(4)a)}^(8)