Home
Class 12
MATHS
If a gt 0 , 2 log(x) a + log(ax) a + 3 l...

If `a gt 0 , 2 log_(x) a + log_(ax) a + 3 log_(a^(2)x) a = 0 ` then x =

A

`a^(1//2)`

B

`a^(-1//2)`

C

`a^(-2//3)`

D

`a^(-4//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \log_{x} a + \log_{ax} a + 3 \log_{a^2 x} a = 0 \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the change of base formula, we can rewrite the logarithms: \[ \log_{x} a = \frac{\log a}{\log x}, \quad \log_{ax} a = \frac{\log a}{\log(ax)} = \frac{\log a}{\log a + \log x}, \quad \log_{a^2 x} a = \frac{\log a}{\log(a^2 x)} = \frac{\log a}{2\log a + \log x} \] ### Step 2: Substitute the rewritten logarithms into the equation Substituting these into the original equation gives: \[ 2 \cdot \frac{\log a}{\log x} + \frac{\log a}{\log a + \log x} + 3 \cdot \frac{\log a}{2\log a + \log x} = 0 \] ### Step 3: Factor out \(\log a\) Since \(\log a\) cannot be zero (as \(a > 0\)), we can factor it out: \[ \log a \left( 2 \cdot \frac{1}{\log x} + \frac{1}{\log a + \log x} + 3 \cdot \frac{1}{2\log a + \log x} \right) = 0 \] ### Step 4: Set the remaining expression to zero We need to solve: \[ 2 \cdot \frac{1}{\log x} + \frac{1}{\log a + \log x} + 3 \cdot \frac{1}{2\log a + \log x} = 0 \] ### Step 5: Clear the denominators Multiply through by \(\log x (\log a + \log x)(2\log a + \log x)\) to eliminate the fractions: \[ 2(\log a + \log x)(2\log a + \log x) + \log x(2\log a + \log x) + 3\log x(\log a + \log x) = 0 \] ### Step 6: Expand and simplify Expanding each term: \[ 2(2\log a^2 + 3\log a \log x + \log^2 x) + (\log x(2\log a + \log x)) + 3(\log x \log a + \log^2 x) = 0 \] Combine like terms. ### Step 7: Solve the resulting polynomial equation This will yield a quadratic equation in terms of \(\log x\). Let \(t = \log x\): \[ At^2 + Bt + C = 0 \] where \(A\), \(B\), and \(C\) are coefficients derived from the previous step. ### Step 8: Use the quadratic formula Using the quadratic formula: \[ t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] ### Step 9: Substitute back to find \(x\) Convert back from \(t\) to \(x\): \[ x = 10^t \] ### Final Step: Calculate the values of \(x\) Calculate the two possible values of \(x\) based on the two roots obtained from the quadratic formula.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

The values of x, satisfying the equation for AA a>0,2log_(x)a+log_(ax)a+3log_(a^(2)x)a=0 are

Solve :2log_(x)a+log_(ax)a+3log_(b)a=0 where a>0,b=a^(2)x

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

Solve the following equation of x:2(log)_(x)a+(log)_(ax)a+3(log)_(a^(2)x)a=0,a>0

If log_(x){log_(4)(log_(x)(5x^(2)+4x^(3)))}=0, then

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to