Home
Class 12
MATHS
If x + log(10) ( 1 + 2^(x)) = x log(10)...

If x + `log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6,` then the value of x is

A

`(1)/(2)`

B

`(1)/(3)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \log_{10}(1 + 2^x) = x \log_{10}(5) + \log_{10}(6) \), we will follow these steps: ### Step 1: Rearranging the equation We start by rearranging the equation to isolate the logarithmic terms on one side: \[ \log_{10}(1 + 2^x) - \log_{10}(6) = x \log_{10}(5) - x \] ### Step 2: Using properties of logarithms Using the property of logarithms that states \( \log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right) \), we can rewrite the left side: \[ \log_{10}\left(\frac{1 + 2^x}{6}\right) = x \log_{10}(5) - x \] ### Step 3: Factoring out \( x \) on the right side On the right side, we can factor out \( x \): \[ \log_{10}\left(\frac{1 + 2^x}{6}\right) = x(\log_{10}(5) - 1) \] ### Step 4: Exponentiating both sides To eliminate the logarithm, we exponentiate both sides: \[ \frac{1 + 2^x}{6} = 10^{x(\log_{10}(5) - 1)} \] ### Step 5: Simplifying the right side We can simplify the right side further. Since \( 10^{\log_{10}(a)} = a \), we have: \[ \frac{1 + 2^x}{6} = \frac{5^x}{10^x} \] ### Step 6: Cross-multiplying Cross-multiplying gives us: \[ 1 + 2^x = 6 \cdot \frac{5^x}{10^x} \] This simplifies to: \[ 1 + 2^x = \frac{6 \cdot 5^x}{10^x} = \frac{6 \cdot 5^x}{(2 \cdot 5)^x} = \frac{6}{2^x} \] ### Step 7: Multiplying through by \( 2^x \) To eliminate the fraction, we multiply through by \( 2^x \): \[ 2^x + 2^{2x} = 6 \] ### Step 8: Rearranging into a standard form Rearranging gives us a quadratic equation: \[ 2^{2x} + 2^x - 6 = 0 \] ### Step 9: Substituting \( y = 2^x \) Let \( y = 2^x \). Then we have: \[ y^2 + y - 6 = 0 \] ### Step 10: Factoring the quadratic Factoring the quadratic gives: \[ (y - 2)(y + 3) = 0 \] ### Step 11: Solving for \( y \) Setting each factor to zero gives: \[ y - 2 = 0 \quad \Rightarrow \quad y = 2 \] \[ y + 3 = 0 \quad \Rightarrow \quad y = -3 \quad (\text{not valid since } y = 2^x > 0) \] ### Step 12: Finding \( x \) Since \( y = 2^x \) and \( y = 2 \): \[ 2^x = 2 \quad \Rightarrow \quad x = 1 \] Thus, the value of \( x \) is \( \boxed{1} \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(2) log_(10)4x=1 , then the value of x is:

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?