Home
Class 12
MATHS
If log(2) 6 + (1)/(2x ) =log(2) (2^(1//x...

If `log_(2) 6 + (1)/(2x ) =log_(2) (2^(1//x) + 8)`, then the values of x are

A

`(1)/(4), (1)/(3)`

B

`(1)/(4), (1)/(2)`

C

`- (1)/(4) , (1)/(2) `

D

`(1)/(3) , - (1)/(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{2} 6 + \frac{1}{2x} = \log_{2} (2^{\frac{1}{x}} + 8) \), we will follow these steps: ### Step 1: Isolate the logarithmic terms We can start by isolating the logarithmic term on one side of the equation. This gives us: \[ \frac{1}{2x} = \log_{2} (2^{\frac{1}{x}} + 8) - \log_{2} 6 \] ### Step 2: Use the properties of logarithms Using the property of logarithms that states \( \log_{a} b - \log_{a} c = \log_{a} \left( \frac{b}{c} \right) \), we can rewrite the right side: \[ \frac{1}{2x} = \log_{2} \left( \frac{2^{\frac{1}{x}} + 8}{6} \right) \] ### Step 3: Exponentiate both sides Next, we exponentiate both sides to eliminate the logarithm: \[ 2^{\frac{1}{2x}} = \frac{2^{\frac{1}{x}} + 8}{6} \] ### Step 4: Multiply both sides by 6 To simplify, we multiply both sides by 6: \[ 6 \cdot 2^{\frac{1}{2x}} = 2^{\frac{1}{x}} + 8 \] ### Step 5: Rearrange the equation Rearranging gives us: \[ 2^{\frac{1}{x}} = 6 \cdot 2^{\frac{1}{2x}} - 8 \] ### Step 6: Substitute \( t = 2^{\frac{1}{x}} \) Let \( t = 2^{\frac{1}{x}} \). Then \( 2^{\frac{1}{2x}} = \sqrt{t} \): \[ t = 6\sqrt{t} - 8 \] ### Step 7: Rearrange into a quadratic equation Rearranging gives us: \[ t^2 - 6t + 8 = 0 \] ### Step 8: Factor the quadratic equation Factoring the quadratic: \[ (t - 2)(t - 4) = 0 \] ### Step 9: Solve for \( t \) Setting each factor to zero gives: \[ t - 2 = 0 \quad \Rightarrow \quad t = 2 \] \[ t - 4 = 0 \quad \Rightarrow \quad t = 4 \] ### Step 10: Back-substitute for \( x \) Now we back-substitute for \( x \): 1. For \( t = 2 \): \[ 2^{\frac{1}{x}} = 2 \quad \Rightarrow \quad \frac{1}{x} = 1 \quad \Rightarrow \quad x = 1 \] 2. For \( t = 4 \): \[ 2^{\frac{1}{x}} = 4 \quad \Rightarrow \quad \frac{1}{x} = 2 \quad \Rightarrow \quad x = \frac{1}{2} \] ### Final Answer The values of \( x \) are \( \frac{1}{2} \) and \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

log_(2)x=-log_((1)/(2))7, then the value of x is

If log_(2) log_(10)4x=1 , then the value of x is:

log_(2)x+(1)/(2)log_(2)(x+2)=2

If log_(100)x =-1/2 , then the value of x is:

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If L=lim_(x rarr oo){x-x^(2)log_(e)(1+(1)/(x))}, then the value of 8L is

If log_(5)(5^((1)/(x))+125)=log_(5)6+1+(1)/(2x), then x=

If log_(2)(log_(8)x)=log_(8)(log_(2)x), find the value of (log_(2)x)^(2)

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.