Home
Class 12
MATHS
If (1+2x+3x^(2) )^(10) = a(0) + a(1) x +...

If `(1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20)`, then

A

`a_(1) =20`

B

`a_(2) =210`

C

`a_(4) =8085`

D

`a_(20) = 2^(2) xx3^(7) xx7`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficients \( a_1 \), \( a_2 \), and \( a_4 \) from the expansion of \( (1 + 2x + 3x^2)^{10} \). ### Step 1: Identify the expression We start with the expression: \[ (1 + 2x + 3x^2)^{10} \] ### Step 2: Use the multinomial theorem The multinomial theorem states that: \[ (a_1 + a_2 + a_3)^n = \sum_{k_1 + k_2 + k_3 = n} \frac{n!}{k_1! k_2! k_3!} a_1^{k_1} a_2^{k_2} a_3^{k_3} \] In our case, \( a_1 = 1 \), \( a_2 = 2x \), and \( a_3 = 3x^2 \). ### Step 3: Find \( a_1 \) To find \( a_1 \), we need the coefficient of \( x^1 \). This occurs when \( k_2 = 1 \) (from \( 2x \)) and \( k_1 + k_3 = 9 \). The number of ways to choose \( k_1 \) and \( k_3 \) such that \( k_1 + k_3 = 9 \) can be calculated as follows: \[ \text{Coefficient of } x^1 = \frac{10!}{9!1!} (2)^1 (3)^0 = 10 \cdot 2 = 20 \] Thus, \( a_1 = 20 \). ### Step 4: Find \( a_2 \) To find \( a_2 \), we need the coefficient of \( x^2 \). This can occur in two ways: 1. \( k_2 = 0 \) and \( k_3 = 1 \) (from \( 3x^2 \)). 2. \( k_2 = 1 \) and \( k_1 = 8 \) (from \( 2x \) and \( 1 \)). Calculating both cases: 1. For \( k_3 = 1 \) and \( k_1 = 9 \): \[ \text{Coefficient} = \frac{10!}{9!0!1!} (1)^9 (3)^1 = 10 \cdot 3 = 30 \] 2. For \( k_2 = 1 \) and \( k_1 = 8 \): \[ \text{Coefficient} = \frac{10!}{8!1!1!} (2)^1 (1)^8 = 90 \cdot 2 = 180 \] Adding both contributions: \[ a_2 = 30 + 180 = 210 \] ### Step 5: Find \( a_4 \) To find \( a_4 \), we need the coefficient of \( x^4 \). This can occur in several ways: 1. \( k_3 = 2 \) and \( k_2 = 0 \) (from \( 3x^2 \)). 2. \( k_3 = 1 \) and \( k_2 = 2 \). 3. \( k_3 = 0 \) and \( k_2 = 4 \). Calculating: 1. For \( k_3 = 2 \) and \( k_1 = 8 \): \[ \text{Coefficient} = \frac{10!}{8!0!2!} (1)^8 (3)^2 = 45 \cdot 9 = 405 \] 2. For \( k_3 = 1 \) and \( k_2 = 2 \): \[ \text{Coefficient} = \frac{10!}{7!2!1!} (1)^7 (2)^2 (3)^1 = 120 \cdot 4 \cdot 3 = 1440 \] 3. For \( k_3 = 0 \) and \( k_2 = 4 \): \[ \text{Coefficient} = \frac{10!}{6!4!0!} (1)^6 (2)^4 = 210 \cdot 16 = 3360 \] Adding all contributions: \[ a_4 = 405 + 1440 + 3360 = 5205 \] ### Conclusion The coefficients are: - \( a_1 = 20 \) - \( a_2 = 210 \) - \( a_4 = 5205 \)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|13 Videos
  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|15 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos

Similar Questions

Explore conceptually related problems

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of (a_(39))/(a_(40)) , is

If n ge 2 , and (1 + x + x^(2))^(n) = a_(0) + a_(1)x + a_(2)x^(2) + .. . +a_(2n) x^(2n) , then a_(0) - 2a_(1)+ 3a_(2) + ... + (2n + 1)a_(n) = ______

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then