Home
Class 12
MATHS
Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)...

Let `(-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1))` where x and y are real numbers then y-x equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((-2 - \frac{1}{3} i)^3 = \frac{x + iy}{27}\), where \(i = \sqrt{-1}\), we will follow these steps: ### Step 1: Apply the Binomial Theorem We can expand \((-2 - \frac{1}{3} i)^3\) using the binomial theorem: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Here, \(a = -2\) and \(b = -\frac{1}{3} i\). ### Step 2: Calculate \(a^3\) Calculate \((-2)^3\): \[ (-2)^3 = -8 \] ### Step 3: Calculate \(b^3\) Calculate \(\left(-\frac{1}{3} i\right)^3\): \[ \left(-\frac{1}{3} i\right)^3 = -\frac{1}{27} i^3 = -\frac{1}{27} (-i) = \frac{1}{27} i \] ### Step 4: Calculate \(3a^2b\) Calculate \(3(-2)^2\left(-\frac{1}{3} i\right)\): \[ 3(-2)^2\left(-\frac{1}{3} i\right) = 3 \cdot 4 \cdot \left(-\frac{1}{3} i\right) = -4i \] ### Step 5: Calculate \(3ab^2\) Calculate \(3(-2)\left(-\frac{1}{3} i\right)^2\): \[ 3(-2)\left(-\frac{1}{3} i\right)^2 = 3(-2)\left(\frac{1}{9}(-1)\right) = \frac{6}{9} = \frac{2}{3} \] ### Step 6: Combine all parts Now, combine all the parts: \[ (-2 - \frac{1}{3} i)^3 = -8 + \frac{1}{27} i - 4i + \frac{2}{3} \] Combine the real parts and the imaginary parts: \[ = \left(-8 + \frac{2}{3}\right) + \left(\frac{1}{27} - 4\right)i \] ### Step 7: Simplify the real part Convert \(-8\) to a fraction: \[ -8 = -\frac{24}{3} \quad \Rightarrow \quad -\frac{24}{3} + \frac{2}{3} = -\frac{22}{3} \] ### Step 8: Simplify the imaginary part Convert \(4\) to a fraction: \[ 4 = \frac{108}{27} \quad \Rightarrow \quad \frac{1}{27} - \frac{108}{27} = -\frac{107}{27} \] ### Step 9: Write the final expression Thus, we have: \[ (-2 - \frac{1}{3} i)^3 = \left(-\frac{22}{3} - \frac{107}{27} i\right) \] ### Step 10: Set equal to \(\frac{x + iy}{27}\) From the equation \((-2 - \frac{1}{3} i)^3 = \frac{x + iy}{27}\), we can multiply both sides by 27: \[ -22 + \frac{22}{3} \cdot 27 = x + iy \] Thus, we have: \[ x = -198, \quad y = -107 \] ### Step 11: Calculate \(y - x\) Now, calculate \(y - x\): \[ y - x = -107 - (-198) = -107 + 198 = 91 \] ### Final Answer Thus, \(y - x = 91\). ---

To solve the equation \((-2 - \frac{1}{3} i)^3 = \frac{x + iy}{27}\), where \(i = \sqrt{-1}\), we will follow these steps: ### Step 1: Apply the Binomial Theorem We can expand \((-2 - \frac{1}{3} i)^3\) using the binomial theorem: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Here, \(a = -2\) and \(b = -\frac{1}{3} i\). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (OBJECTIVE QUESTION I)(Only one correct option )|25 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (PASSAGE BASED PROBLEMS )(PASSAGE I)|3 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

If 4x" "+" "i(3x-y)" "=" "3" "+" "i" "(-6) , where x and y are real numbers, then find the values of x and y.

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Let A=[(x,y,z),(y,z,x),(z,x,y)] , where x, y and z are real numbers such that x + y + z > 0 and xyz = 2 . If A^(2) = I_(3) , then the value of x^(3)+y^(3)+z^(3) is__________.

If (3/2+(isqrt(3))/2)^(50)=3^(25)(x+iy) , where x and y are reals, then the ordered pair (x,y) is given by

The number of solutions of the equation (x^(4)+2x i)-(3x^(2)+iy)=(1+2yi)+(3-5i), where x and y are positive real is

Perform the indicated operation and give your anwer in the form x+iy , where x and y are real numbers and i=sqrt(-1) : (i) ((1)/(2)+(1)/(4)i)(-(2)/(3)-(1)/(4)i) (ii) (5+2i)/(-1+sqrt(3)i) . (iii) (sqrt(5)-7i)(sqrt(5)-7i)^(2)+(-2+7i)^(2) .

x+iy=(1-i sqrt(3))^(100), then (x,y)=

(a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii) -sqrt(5)-sqrt(7)i (iv) -sqrt(5)i (v) (4)/(5) (vi) 49-(i)/(7) (vii) (1-i)/(1+i) (viii) (1+i)^(2) (ix) (2+5i)^(2) (x) (-2-(1)/(3)i)^(3) (b) Find the real number x and y if: (i) (x-iy)(3+5i) is the conjugate of -6-24 i (ii) -3+ix^(2)y and x^(2)+y+4i are congugate of each other.

IIT JEE PREVIOUS YEAR-COMPLEX NUMBERS-TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)
  1. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  2. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |