Home
Class 12
MATHS
Let A={theta in (-pi /2,pi):(3+2i sin th...

Let `A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta )` is purely imaginary } Then the sum of the elements in A is

A

`(3pi)/(4)`

B

`(5 pi)/(6)`

C

`pi`

D

`(2 pi )/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \(\theta\) such that the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\) is purely imaginary. This means that the real part of the expression must equal zero. ### Step-by-Step Solution: 1. **Set up the equation**: We have the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\). We want to find when this is purely imaginary, meaning the real part must be zero. 2. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(3 + 2i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)}. \] 3. **Calculate the denominator**: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1 + 4 \sin^2 \theta. \] 4. **Calculate the numerator**: \[ (3 + 2i \sin \theta)(1 + 2i \sin \theta) = 3 + 6i \sin \theta + 2i \sin \theta + 4i^2 \sin^2 \theta = 3 + 8i \sin \theta - 4 \sin^2 \theta. \] Thus, the numerator simplifies to: \[ (3 - 4 \sin^2 \theta) + 8i \sin \theta. \] 5. **Combine the results**: The expression now becomes: \[ \frac{(3 - 4 \sin^2 \theta) + 8i \sin \theta}{1 + 4 \sin^2 \theta}. \] 6. **Separate real and imaginary parts**: The real part \(x\) and imaginary part \(y\) are: \[ x = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta}, \quad y = \frac{8 \sin \theta}{1 + 4 \sin^2 \theta}. \] 7. **Set the real part to zero**: For the expression to be purely imaginary, we set \(x = 0\): \[ 3 - 4 \sin^2 \theta = 0. \] 8. **Solve for \(\sin^2 \theta\)**: \[ 4 \sin^2 \theta = 3 \implies \sin^2 \theta = \frac{3}{4} \implies \sin \theta = \pm \frac{\sqrt{3}}{2}. \] 9. **Determine the angles**: The values of \(\theta\) for \(\sin \theta = \frac{\sqrt{3}}{2}\) are: \[ \theta = \frac{\pi}{3}, \quad \text{and for } \sin \theta = -\frac{\sqrt{3}}{2}, \quad \theta = -\frac{\pi}{3}. \] 10. **Check the range**: The angles must be in the interval \((- \frac{\pi}{2}, \pi)\). Both \(\frac{\pi}{3}\) and \(-\frac{\pi}{3}\) are valid. 11. **Sum the elements**: The sum of the elements in set \(A\) is: \[ \frac{\pi}{3} + \left(-\frac{\pi}{3}\right) + \frac{2\pi}{3} = \frac{2\pi}{3}. \] ### Final Answer: The sum of the elements in \(A\) is \(\frac{2\pi}{3}\).

To solve the problem, we need to determine the values of \(\theta\) such that the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\) is purely imaginary. This means that the real part of the expression must equal zero. ### Step-by-Step Solution: 1. **Set up the equation**: We have the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\). We want to find when this is purely imaginary, meaning the real part must be zero. 2. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (OBJECTIVE QUESTION I)(Only one correct option )|25 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (PASSAGE BASED PROBLEMS )(PASSAGE I)|3 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
IIT JEE PREVIOUS YEAR-COMPLEX NUMBERS-TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)
  1. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta ) is pur...

    Text Solution

    |

  2. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |